Понятия: информация, данные, знания; количество и качество информации

Вид материалаДокументы

Содержание


Области применения экспертных систем.
Нейронные сети: основные положения
Рис.1 Искусственный нейрон
Рис.2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор
Рис.3 Однослойный перцептрон
Рис.4 Двухслойный перцептрон
Рис.5 Однонейронный перцептрон
Рис.6 Визуальное представление работы НС с рисунка 5
Нейронные сети: алгоритм обратного распространения
Подобный материал:
1   2   3   4   5

Области применения экспертных систем.


Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление ) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.

а) Медицинская диагностика.

Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами. Наиболее известна диагностическая система MYCIN, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. Ее первая версия была разработана в Стенфордском университете в середине 70-х годов. В настоящее время эта система ставит диагноз на уровне врача-специалиста. Она имеет расширенную базу знаний, благодаря чему может применяться и в других областях медицины.

б) Прогнозирование.

Прогнозирующие системы предсказывают возможные результаты или события на основе данных о текущем состоянии объекта. Программная система “Завоевание Уолл-стрита” может проанализировать конъюнктуру рынка и с помощью статистических методов алгоритмов разработать для вас план капиталовложений на перспективу. Она не относится к числу систем, основанных на знаниях, поскольку использует процедуры и алгоритмы традиционного программирования. Хотя пока еще отсутствуют ЭС, которые способны за счет своей информации о конъюнктуре рынка помочь вам увеличить капитал, прогнозирующие системы уже сегодня могут предсказывать погоду, урожайность и поток пассажиров. Даже на персональном компьютере, установив простую систему, основанную на знаниях, вы можете получить местный прогноз погоды.

в) Планирование.

Планирующие системы предназначены для достижения конкретных целей при решении задач с большим числом переменных. Дамасская фирма Informat впервые в торговой практике предоставляет в распоряжении покупателей 13 рабочих станций, установленных в холле своего офиса, на которых проводятся бесплатные 15-минутные консультации с целью помочь покупателям выбрать компьютер, в наибольшей степени отвечающий их потребностям и бюджету. Кроме того, компания Boeing применяет ЭС для проектирования космических станций, а также для выявления причин отказов самолетных двигателей и ремонта вертолетов. Экспертная система XCON, созданная фирмой DEC, служит для определения или изменения конфигурации компьютерных систем типа VAX и в соответствии с требованиями покупателя. Фирма DEC разрабатывает более мощную систему XSEL, включающую базу знаний системы XCON, с целью оказания помощи покупателям при выборе вычислительных систем с нужной конфигурацией. В отличие от XCON система XSEL является интерактивной.

г) Интерпретация.

Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего типа, объединяет знания девяти экспертов. Используя сочетания девяти методов экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион долларов, причем наличие этих залежей не предполагал ни один из девяти экспертов. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и типы судов в тихом океане по данным акустических систем слежения.

д) Контроль и управление.

Системы, основанные на знаниях, могут применятся в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях.

е) Диагностика неисправностей в механических и электрических устройствах.

В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров.

ж) Обучение.

Системы, основанные на знаниях, могут входить составной частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта (например, студента) и анализирует его поведение. База знаний изменяется в соответствии с поведением объекта. Примером этого обучения может служить компьютерная игра, сложность которой увеличивается по мере возрастания степени квалификации играющего. Одной из наиболее интересных обучающих ЭС является разработанная Д.Ленатом система EURISCO, которая использует простые эвристики. Эта система была опробована в игре Т.Тревевеллера, имитирующая боевые действия. Суть игры состоит в том, чтобы определить состав флотилии, способной нанести поражение в условиях неизменяемого множества правил. Система EURISCO включила в состав флотилии небольшие, способные провести быструю атаку корабли и одно очень маленькое скоростное судно и постоянно выигрывала в течение трех лет, несмотря на то, что в стремлении воспрепятствовать этому правила игры меняли каждый год.

Большинство ЭС включают знания, по содержанию которых их можно отнести одновременно к нескольким типам. Например, обучающая система может также обладать знаниями, позволяющими выполнять диагностику и планирование. Она определяет способности обучаемого по основным направлениям курса, а затем с учетом полученных данных составляет учебный план. Управляющая система может применяться для целей контроля, диагностики, прогнозирования и планирования. Система, обеспечивающая сохранность жилища, может следить за окружающей обстановкой, распознавать происходящие события (например, открылось окно), выдавать прогноз (вор-взломщик намеревается проникнуть в дом) и составлять план действий (вызвать полицию).




  1. Системы извлечения знаний и их отличительные особенности. Принципы работы систем извлечения знаний. Знания экспертов. Правила, условие, действие.
  2. Компоненты информационной технологии в экспертной системе. Решение, объяснение решения, система правил, семантические модели, интерпретатор, модуль создания системы, оболочка экспертных систем.
  3. Нейросетевые методы обработки информации и средства их программно-аппаратной поддержки.

Нейронные сети: основные положения

В последние десятилетия в мире бурно развивается новая прикладная область математики, специализирующаяся на искусственных нейронных сетях (НС). Искусственные нейронные сети индуцированы биологией, так как они состоят из элементов, функциональные возможности которых аналогичны большинству элементарных функций биологического нейрона. Эти элементы затем организуются по способу, который может соответствовать (или не соответствовать) анатомии мозга. Несмотря на такое поверхностное сходство, искусственные нейронные сети демонстрируют удиви-тельное число свойств присущих мозгу. Например, они обучаются на основе опыта, обобщают предыдущие прецеденты на новые случаи и извлекают существенные свойства из поступающей информации, содержащей излишние данные. Примерами применения НС служат автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование, создание экспертных систем, организация ассоциативной памяти и многие другие приложения. С помощью НС можно, например, предсказывать показатели биржевого рынка, выполнять распознавание оптических или звуковых сигналов, создавать самообучающиеся системы, способные управлять автомашиной при парковке или синтезировать речь по тексту.

Несмотря на такое функциональное сходство НС с человеческим мозгом, даже самый оптимистичный их защитник не предположит, что в скором будущем ИНС будут дублировать функции человеческого мозга.

Свойство искусственных нейронных сетей


Абстрагирование

Некоторые из искусственных нейронных сетей обладают способно-стью извлекать сущность из входных сигналов. Например, сеть может быть обучена на последовательность искаженных версий буквы "А". По-сле соответствующего обучения предъявление такого искаженного при-мера приведет к тому, что сеть породит букву совершенной формы. В некотором смысле она научится порождать то, что никогда не видела.

Эта способность извлекать идеальное из несовершенных входов ставит интересные философские вопросы. Она напоминает концепцию идеалов, выдвинутую Платоном в его "Республике". Во всяком случае способность извлекать идеальные прототипы является у людей весьма ценным качеством.

Применимость

Искусственные нейронные сети не являются панацеей. Они, оче-видно, не годятся для выполнения таких задач, как начисление заработ-ной платы. Похоже, однако, что им будет отдаваться предпочтение в большом классе задач распознавания образов, с которыми плохо или во-обще не справляются обычные компьютеры.

Обучение

Искусственные нейронные сети могут менять свое поведение в за-висимости от внешней среды. Этот фактор в большей степени, чем лю-бой другой, ответствен за тот интерес, который они вызывают. После предъявления входных сигналов (возможно, вместе с требуемыми выхо-дами) они самонастраиваются, чтобы обеспечивать требуемую реакцию. Было разработано множество обучающих алгоритмов, каждый со своими сильными и слабыми сторонами. Как будет указано в этой книге позднее, все еще существуют проблемы относительно того, чему сеть может обу-читься и как обучение должно проводиться.


Широкий круг задач, решаемый НС, не позволяет в настоящее время создавать универсальные, мощные сети, вынуждая разрабатывать специализированные НС, функционирующие по различным алгоритмам.

Модели НС могут быть программного и аппаратного исполнения. В дальнейшем речь пойдет в основном о первом типе.

Несмотря на существенные различия, отдельные типы НС обладают несколькими общими чертами.




Рис.1 Искусственный нейрон
Во-первых, основу каждой НС составляют относительно простые, в большинстве случаев – однотипные, элементы (ячейки), имитирующие работу нейронов мозга. Далее под нейроном будет подразумеваться искусственный нейрон, то есть ячейка НС. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Общий вид нейрона приведен на рисунке 1. Каждый синапс характеризуется величиной синаптической связи или ее весом wi, который по физическому смыслу эквивалентен электрической проводимости.

Текущее состояние нейрона определяется, как взвешенная сумма его входов:

(1)

Выход нейрона есть функция его состояния:

y = f(s) (2)




Рис.2 а) функция единичного скач­ка; б) линейный порог (гис­те­ре­зис); в) сигмоид – гипербо­ли­ческий тангенс; г) сигмоид – фор­мула (3)
Нелинейная функция f называется активационной и может иметь различный вид, как показано на рисунке 2. Одной из наиболее распространеных является нелинейная функция с насыщением, так называемая логистическая функция или сигмоид (т.е. функция S-образного вида)[2]:

(3)

При уменьшении  сигмоид становится более пологим, в пределе при =0 вырождаясь в горизонтальную линию на уровне 0.5, при увеличении  сигмоид приближается по внешнему виду к функции единичного скачка с порогом T в точке x=0. Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне [0,1]. Одно из ценных свойств сигмоидной функции – простое выражение для ее производной, применение которого будет рассмотрено в дальнейшем.

(4)

Следует отметить, что сигмоидная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.

Отклик сети после обучения может быть до некоторой степени не-чувствителен к небольшим изменениям входных сигналов. Эта внутренне присущая способность видеть образ сквозь шум и искажения жизненно важна для распознавания образов в реальном мире. Она позволяет преодолеть требование строгой точности, предъявляемое обычным компьютером, и открывает путь к системе, которая может иметь дело с тем несовершенным миром, в котором мы живем. Важно отметить, что искусственная нейронная сеть делает обобщения автоматически благодаря своей структуре, а не с помощью использования "человеческого интеллекта" в форме специально написанных компьютерных программ.




Рис.3 Однослойный перцептрон
Возвращаясь к общим чертам, присущим всем НС, отметим, во-вторых, принцип параллельной обработки сигналов, который достигается путем объединения большого числа нейронов в так называемые слои и соединения определенным образом нейронов различных слоев, а также, в некоторых конфигурациях, и нейронов одного слоя между собой, причем обработка взаимодействия всех нейронов ведется послойно.

В качестве примера простейшей НС рассмотрим трехней­ронный перцептрон (рис.3), то есть такую сеть, нейроны которой имеют активационную функцию в виде единичного скачка* . На n входов поступают некие сигналы, проходящие по синапсам на 3 нейрона, образующие единственный слой этой НС и выдающие три выходных сигнала:

, j=1...3 (5)

Очевидно, что все весовые коэффициенты синапсов одного слоя нейронов можно свести в матрицу W, в которой каждый элемент wij задает величину i-ой синаптической связи j-ого нейрона. Таким образом, процесс, происходящий в НС, может быть записан в матричной форме:

Y=F(XW) (6)

где X и Y – соответственно входной и выходной сигнальные векторы, F( V) – активационная функция, применяемая поэлементно к компонентам вектора V.

Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированной микросхемы, на которых обычно реализуется НС. Чем сложнее НС, тем масштабнее задачи, подвластные ей.

Выбор структуры НС осуществляется в соответствии с особенностями и сложностью задачи. Для решения некоторых отдельных типов задач уже существуют оптимальные, на сегодняшний день, конфигурации, описанные, например, в [2],[3],[4] и других изданиях, перечисленных в конце статьи. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации. При этом он руководствуется несколькими основополагающими принципами: возможности сети возрастают с увеличением числа ячеек сети, плотности связей между ними и числом выделенных слоев (влияние числа слоев на способность сети выполнять классификацию плоских образов показано на рис.4 из [5]); введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети; сложность алгоритмов функционирования сети (в том числе, например, введение нескольких типов синапсов – возбуждающих, тромозящих и др.) также способствует усилению мощи НС. Вопрос о необходимых и достаточных свойствах сети для решения того или иного рода задач представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза НС сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев оптимальный вариант получается на основе интуитивного подбора.

Очевидно, что процесс функционирования НС, то есть сущность действий, которые она способна выполнять, зависит от величин синаптических связей, поэтому, задавшись определенной структурой НС, отвечающей какой-либо задаче, разработчик сети должен найти оптимальные значения всех переменных весовых коэффициентов (некоторые синаптические связи могут быть постоянными).

Этот этап называется обучением НС, и от того, насколько качественно он будет выполнен, зависит способность сети решать поставленные перед ней проблемы во время эксплуатации. На этапе обучения кроме параметра качества подбора весов важную роль играет время обучения. Как правило, эти два параметра связаны обратной зависимостью и их приходится выбирать на основе компромисса.

Обучение НС может вестись с учителем или без него. В первом случае сети предъявляются значения как входных, так и желательных выходных сигналов, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Во втором случае выходы НС формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы.

Существует великое множество различных алгоритмов обучения, которые однако делятся на два больших класса: детерминистские и стохастические. В первом из них подстройка весов представляет собой жесткую последовательность действий, во втором – она производится на основе действий, подчиняющихся некоторому случайному процессу.

Развивая дальше вопрос о возможной классификации НС, важно отметить существование бинарных и аналоговых сетей. Первые из них оперируют с двоичными сигналами, и выход каждого нейрона может принимать только два значения: логический ноль ("заторможенное" состояние) и логическая единица ("возбужденное" состояние). К этому классу сетей относится и рассмотренный выше перцептрон, так как выходы его нейронов, формируемые функцией единичного скачка, равны либо 0, либо 1. В аналоговых сетях выходные значения нейронов спо­соб­ны принимать непрерывные значения, что могло бы иметь место после замены активационной функции нейронов перцептрона на сигмоид.

Еще одна классификация делит НС на синхронные и асинхронные[3]. В первом случае в каждый момент времени свое состояние меняет лишь один нейрон. Во втором – состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в НС задается итерационным выполнением однотипных действий над нейронами. Далее будут рассматриваться только синхронные НС.

С


Рис.4 Двухслойный перцептрон
ети также можно классифицировать по числу слоев. На рисунке 4 представлен двухслойный перцептрон, полученный из перцептрона с рисунка 3 путем добавления второго слоя, состоящего из двух нейронов. Здесь уместно отметить важную роль нелинейности активационной функции, так как, если бы она не обладала данным свойством или не входила в алгоритм работы каждого нейрона, результат функционирования любой p-слойной НС с весовыми матрицами W(i), i=1,2,...p для каждого слоя i сводился бы к перемножению входного вектора сигналов X на матрицу

W()=W(1)W(2) ...W(p) (7)

то есть фактически такая p-слойная НС эквивалентна однослойной НС с весовой матрицей единственного слоя W():

Y=XW() (8)

Продолжая разговор о нелинейности, можно отметить, что она иногда вводится и в синаптические связи. Большинство известных на сегодняшний день НС используют для нахождения взвешенной суммы входов нейрона формулу (1), однако в некоторых приложениях НС полезно ввести другую запись, например:

(9)

или даже

(10)

Вопрос в том, чтобы разработчик НС четко понимал, для чего он это делает, какими ценными свойствами он тем самым дополнительно наделяет нейрон, и каких лишает. Введение такого рода нелинейности, вообще говоря, увеличивает вычислительную мощь сети, то есть позволяет из меньшего числа нейронов с "нелинейными" синапсами сконструировать НС, выполняющую работу обычной НС с большим числом стандартных нейронов и более сложной конфигурации[4].

Из рисунка функции единичного скачка видно, что пороговое значение T, в общем случае, может принимать произвольное значение. Более того, оно должно принимать некое произвольное, неизвестное заранее значение, которое подбирается на стадии обучения вместе с весовыми коэффициентами. То же самое относится и к центральной точке сигмоидной зависимости, которая может сдвигаться вправо или влево по оси X, а также и ко всем другим активационным функциям. Это, однако, не отражено в формуле (1), которая должна была бы выглядеть так:

(11)

Дело в том, что такое смещение обычно вводится путем добавления к слою нейронов еще одного входа, возбуждающего дополнительный синапс каждого из нейронов, значение которого всегда равняется 1. Присвоим этому входу номер 0. Тогда

(12)

где w0 = –T, x0 = 1.

Очевидно, что различие формул (1) и (12) состоит лишь в способе нумерации входов.




Рис.5 Однонейронный перцептрон
Из всех активационных функций, изображенных на рисунке 2, одна выделяется особо. Это гиперболический тангенс, зависимость которого симметрична относительно оси X и лежит в диапазоне [-1,1]. Забегая вперед, скажем, что выбор области возможных значений выходов нейронов во многом зависит от конкретного типа НС и является вопросом реализации, так как манипуляции с ней влияют на различные показатели эффективности сети, зачастую не изменяя общую логику ее работы. Пример, иллюстрирующий данный аспект, будет представлен после перехода от общего описания к конкретным типам НС.

Какие задачи может решать НС? Грубо говоря, работа всех сетей сводится к классификации (обоб­щению) входных сигналов, принадлежащих n-мерному гипер­про­странству, по некоторому числу классов. С матема­ти­ческой точ­ки зрения это происходит путем разбиения гипер­про­стран­ства ги­пер­плоскостями (запись для случая однослой­ного пер­цеп­тро­на)

, k=1...m (13)


Таблица 1

x1 x2

0

1

0

A

B

1

B

A



Каждая полученная область является областью определения отдельного класса. Число таких классов для одной НС перцептронного типа не превышает 2m, где m – число выходов сети. Однако не все из них могут быть разделимы данной НС.

Например, однослойный перцептрон, состоящий из одного нейрона с дву­мя входами, представленный на рисунке 5, не способен разделить плос­кость (двумерное гиперпространоство) на две полуплоскости так, чтобы осу­ще­ствить классификацию входных сигналов по классам A и B (см. таблицу 1).

Уравнение сети для этого случая

(14)

является уравнением прямой (одномерной гиперплоскости), которая ни при каких условиях не может разделить плоскость так, чтобы точки из множества входных сигналов, принадлежащие разным классам, оказались по разные стороны от прямой (см. рисунок 6).

Если присмотреться к таблице 1, можно заметить, что данное разбиение на классы реали­зу­ет логическую функцию исключающего ИЛИ для входных сигналов. Невозможность реализа­ции однослойным перцептроном этой функции получила название проблемы исключающего ИЛИ.




Рис.6 Визуальное представление работы НС с рисунка 5
Функции, которые не реализуются однослойной сетью, называ­ют­ся линейно неразделимыми[2]. Решение задач, подпадающих под это ог­ра­ничение, заключается в применении 2-х и более слойных сетей или се­тей с нелинейными синапсами, однако и тогда существует вероят­ность, что корректное разделение некоторых входных сигналов на классы невозможно.

Наконец, мы можем более подробно рассмотреть вопрос обучения НС, для начала – на примере перцептрона с рисунка 3.

Рассмотрим алгоритм обучения с учителем[2][4].

1. Проинициализировать элементы весовой матрицы (обычно небольшими случайными значениями).

2. Подать на входы один из входных векторов, которые сеть должна научиться различать, и вычислить ее выход.

3. Если выход правильный, перейти на шаг 4.

Иначе вычислить разницу между идеальным и полученным значениями выхода:



Модифицировать веса в соответствии с формулой:



где t и t+1 – номера соответственно текущей и следующей итераций;  – коэффициент скорости обучения, 0<Ј1; i – номер входа; j – номер нейрона в слое.

Очевидно, что если YI > Y весовые коэффициенты будут увеличены и тем самым уменьшат ошибку. В противном случае они будут уменьшены, и Y тоже уменьшится, приближаясь к YI.

4. Цикл с шага 2, пока сеть не перестанет ошибаться.

На втором шаге на разных итерациях поочередно в случайном порядке предъявляются все возможные входные вектора. К сожалению, нельзя заранее определить число итераций, которые потребуется выполнить, а в некоторых случаях и гарантировать полный успех. Этот вопрос будет косвенно затронут в дальнейшем.


Нейронные сети: алгоритм обратного распространения

Среди различных структур нейронных сетей (НС) одной из наиболее известных является многослойная структура, в которой каждый нейрон произвольного слоя связан со всеми аксонами нейронов предыдущего слоя или, в случае первого слоя, со всеми входами НС. Такие НС называются полносвязными. Когда в сети только один слой, алгоритм ее обучения с учителем довольно очевиден, так как правильные выходные состояния нейронов единственного слоя заведомо известны, и подстройка синаптических связей идет в направлении, минимизирующем ошибку на выходе сети. По этому принципу строится, например, алгоритм обучения однослойного перцептрона[1]. В многослойных же сетях оптимальные выходные значения нейронов всех слоев, кроме последнего, как правило, не известны, и двух или более слойный перцептрон уже невозможно обучить, руководствуясь только величинами ошибок на выходах НС. Один из вариантов решения этой проблемы – разработка наборов выходных сигналов, соответствующих входным, для каждого слоя НС, что, конечно, является очень трудоемкой операцией и не всегда осуществимо. Второй вариант – динамическая подстройка весовых коэффициентов синапсов, в ходе которой выбираются, как правило, наиболее слабые связи и изменяются на малую величину в ту или иную сторону, а сохраняются только те изменения, которые повлекли уменьшение ошибки на выходе всей сети. Очевидно, что данный метод "тыка", несмотря на свою кажущуюся простоту, требует громоздких рутинных вычислений. И, наконец, третий, более приемлемый вариант – распространение сигналов ошибки от выходов НС к ее входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Этот алгоритм обучения НС получил название процедуры обратного распространения.
  1. Общее понятие о системе искусственного интеллекта. Основные сферы использования систем искусственного интеллекта.
  2. Моделирование информационных систем. Математические модели системы. Классификация математических моделей.
  3. Методологические основы применения метода имитационного моделирования. Моделирование случайных событий. Моделирование случайных величин. Моделирование случайных векторов. Этапы имитационного моделирования.


624.pdf


  1. Подходы к построению ИС. ИС как среда реализации функций управления. Основные модули ИС.
  2. Стандарты рекомендаций по управлению производством (MRP II, ERP, CSRP, и другие подходы). Типичные представители данного подхода.
  3. Автоматизация управления как процесс – ориентированной деятельности. Понятие бизнес – процесса. Основные характеристики данного подхода. Workflow диаграммы.
  4. Технологии виртуальных предприятий и разработка ИС под конкретную организацию.
  5. Реинжиниринг бизнес – процессов. Управление процессом разработки ИС.
  6. Жизненный цикл ИС и ИТ. Понятие программного продукта (изделия). Жизненный цикл программного изделия.
  7. Методы проектирования программного продукта: методы нисходящего и восходящего проектирования, каскадная, поэтапная (итерационная) и спиральные модели. Этапы разработки.
  8. Инструментальные средства для поддержки проектирования: современные языки программирования, программные комплексы для поддержки проектных работ, автоматизированные системы проектирования (использование CASE-систем для проектирования приложений и баз данных).
  9. Построение ИС на основе прототипов. Достоинства и недостатки данного подхода к построению ИС.
  10. Построение ИС на основе пакетов программ. Критерии оценки пакетов программ. Достоинства и недостатки данного подхода к построению ИС.




* Иногда перцептроном называют любую НС слоистой структуры, однако здесь и далее под перцептроном понимается только сеть, состоящая из нейронов с активационными функциями единичного скачка (бинарная сеть).