Задача измерения постоянных напряжения и силы тока заключается в на­хождении их значения и полярности. Целью измерения переменных напря­жения и силы тока является определение какого-либо их параметра

Вид материалаЗадача

Содержание


5. Цифровые вольтметры
Точность цифровых вольтметров.
Виды и типы цифровых вольтметров (факультативно).
Вольтметры с времяимпульсным преобразованием
N пропорционально величине входного напряжения U'
Времяимпульсные вольтметры с двойным интегри­рованием
К — емкость счетчика. В момент появления фронта импульса U
6. Техника измерения напряжения
Подобный материал:
1   2   3   4

5. Цифровые вольтметры

По виду измеряемой величины цифровые вольтметры делятся на: вольт­метры постоянного тока, переменного тока (средневыпрямленного или сред­него квадратического значения), импульсные вольтметры — для измерения параметров видео- и радиоимпульсных сигналов и универсальные вольтмет­ры, предназначенные для измерения напряжения постоянного и переменного тока, а также ряда других электрических и неэлектрических величин (сопро­тивления, температуры и прочее).

Принцип работы цифровых измерительных приборов основан на дис­кретном и цифровом представлении непрерывных измеряемых величин. Уп­рощенная структурная схема цифрового вольтметра приведена на рис. 5.10. Схема состоит из входного устройства, АЦП, цифрового отсчетного устрой­ства и управляющего устройства.

Рис. 5.10. Упрощенная структурная схема цифрового вольтметра

Входное устройство содержит делитель напряжения; в вольтметрах пере­менного тока оно включает в себя также преобразователь переменного тока в постоянный.

АЦП преобразует аналоговый сигнал в цифровой, представляемый циф­ровом кодом. Процесс аналого-цифрового преобразования составляет сущ­ность любого цифрового прибора, в том числе и вольтметра. Использование в АЦП цифровых вольтметров двоично-десятичного кода облегчает обратное преобразование цифрового кода в десятичное число, отражаемое цифровым отсчетным устройством.

Цифровое отсчетное устройство измерительного прибора регистрирует измеряемую величину. Управляющее устройство объединяет и управляет всеми узлами вольтметра.

По типу АЦП цифровые вольтметры могут быть разделены на четыре ос­новные группы:

• кодоимпульсные (с поразрядным уравновешиванием);

• времяимпульсные;

• частотно-импульсные;

• пространственного кодирования.

В настоящее время цифровые вольтметры строятся чаще на основе кодо-импульсного и времяимпульсного преобразования.

АЦП вольтметров преобразуют сигнал постоянного тока в цифровой код, поэтому и цифровые вольтметры также считаются приборами постоянного тока. Для измерения напряжения переменного тока на входе вольтметра ста­вится преобразователь переменного напряжения в постоянное напряжение, чаще всего это детектор средневыпрямленного значения.

Проанализируем основные технические характеристики среднестатисти­ческого цифрового вольтметра постоянного тока:

• диапазон измерения: 100 мВ, 1 В, 10 В, 100 В, 1000 В;

• порог чувствительности (уровень квантования амплитуды напряжения или единица дискретности) на диапазоне напряжения в 100 мВ может быть 1мВ, 100 мкВ, 10 мкВ;

• количество знаков (длина цифровой шкалы) — отношение максималь­ной измеряемой величины на этом диапазоне к минимальной; например: диапазону измерения 100 мВ при уровне квантования 10 мкВ соответствует 104 знаков;

• входное сопротивление электрической схемы — очень высокое, обычно более 100 МОм;

• помехозащищенность — так как цифровые вольтметры обладают высо­кой чувствительностью, очень важно обеспечить хорошую помехозащищен­ность.

Упрощенная структурная схема, поясняющая принцип возникновения по­мех на входе цифрового вольтметра показана на рис. 5.11.

Здесь Eс — источник сигнала; Енв— помеха, приложенная к входу вольт­метра (помеха нормального вида, наводки); Еов — помеха общего вида, воз­никающая из-за разности потенциалов корпусов источника сигнала и вольт­метра; Rj — внутреннее сопротивление источника сигнала; Rвх — входное сопротивление вольтметра.

Рис. 5.11. Схема возникновения помех на входе цифрового вольтметра





Помеха общего вида возникает в электрической схеме из-за несовершен­ства источников питания на частотах 50 и 100 Гц, создает падение напряже­ния на сопротивлении r0 соединительного провода и переходит во входную цепь вольтметра, если сопротивление утечки Rут между клеммами и корпусом невелико. Если же одну из клемм прибора заземлить, то доля помехи общего вида, переходящая во входную цепь, увеличится. Поэтому при измерении малых сигналов пользуются изолированным от земли (корпуса) входом вольтметра.

Способы уменьшения влияния помех:

• использование экранированных проводов и изолированного входа вольтметра;

• применение интегрирующих вольтметров; при этом период помехи кратен времени измерения и помеха устраняется по пе­риоду согласно формуле:



• включение на входе вольтметра фильтра с большим коэффициентом по­давления помехи (60... 70 дБ).

В последнем случае коэффициент подавления помехи определяется сле­дующим образом: Кпод = 201g (Uп вх /Uп вых), где Un вх — амплитуда помехи на входе фильтра, Uп вых — амплитуда помехи на его выходе.

Точность цифровых вольтметров. Распределение погрешности по диапа­зону измерения напряжений определяется пределом допускаемой относи­тельной основной погрешности , характеризующей класс точности средства измерения:



где и — измеряемое напряжение; UK— конечное значение диапазона измере­ний; с, d — соответственно относительные приведенные суммарная и адди­тивная составляющие погрешности.

Быстродействие. Современные схемы АЦП, применяемые в цифровых вольтметрах, могут обеспечить очень большое быстродействие, однако из соображений точной регистрации полученного результата и усреднения сете­вой помехи у цифровых вольтметров оно уменьшается примерно до 20...50 измерений в секунду.


Виды и типы цифровых вольтметров (факультативно).


Кодоимпульсные цифровые вольтметры

В кодоимпульсных цифровых вольтметрах (в вольтметрах с поразрядным уравновешиванием) реализуется принцип компенсационного метода измере­ния напряжения. Упрощенная структурная схема такого вольтметра пред­ставлена на рис. 5.12.

Измеряемое напряжение U'x, полученное с входного устройства, сравни­вается с компенсирующим напря­жением UK, вырабатываемым прецизион­ным делителем и источником опорного напряжения. Компенсирующее напряже­ние имеет несколько уровней, квантованных в соответствии с двоично-десятичной системой счисления. Например, двухразрядный цифровой вольт­метр, предназначенный для измерения напряжений до 100 В, может включать следующие уровни напряжений: 80, 40, 20, 10, 8, 4, 2, 1 В.

Сравнение измеряемого U'x и компенсирующего UK напряжений произво­дится последовательно по командам управляющего устройства. Процесс сравнения напряжений показан на рис. 5.13. Управляющие импульсы Uy че­рез определенные интервалы времени переключают сопротивления прецизи­онного делителя таким образом, что на выходе делителя последовательно возникают значения напряжения: 80, 40, 20, 10, 8, 4, 2, 1 В; одновременно к соответствующему выходу прецизионного делителя подключается устрой­ство сравнения.

Если UK > U'x, то с устройства сравнения поступает сигнал С/ср на отклю­чение в делителе соответствующего звена, так, чтобы снять сигнал С/к. Если UK < U'x, то сигнал с устройства сравнения не поступает. После окончания процесса сравнения полученный сигнал С/юд положения ключей прецизион­ного делителя и является тем кодом, который считывается цифровым отсчетным устройством.

На рис. 5.13 для наглядности показан процесс кодирования аналогового напряжения с амплитудой 63 В, из которого видно, что код, соответствующий этому сигналу, будет 01100011.

Процесс измерения напряжения в кодоимпульсном приборе напоминает взвешивание на весах, поэтому приборы иногда называют поразрядно-уравновешивающими. Точность кодоимпульсного прибора зависит от ста­бильности опорного напряжения, точности изготовления делителя, порога срабатывания сравнивающего устройства.

Для создания нормальной помехозащищенности (60...70 дБ) на входе приборов ставится помехоподавляющий фильтр. В целом такой цифровой прибор обладает хорошими техническими характеристиками и используется как лабораторный. Первые цифровые приборы создавались по методу взве­шивания, но сейчас более широкое распространение получили приборы времяимпульсного типа.


Вольтметры с времяимпульсным преобразованием

В основе принципа действия вольтметра времяимпульсного (временнбго) типа лежит преобразование с помощью АЦП измеряемого напряжения в пропорциональный интервал времени, который заполняется счетными им­пульсами, следующими с известной стабильной частотой следования. В ре­зультате такого преобразования дискретный сигнал измерительной информации на выходе преобразователя имеет вид пачки счетных импульсов, число которых пропорционально уровню измеряемого напряжения.

Погрешность измерений времяимпульсных вольтметров определяется ря­дом факторов: погрешностью дискретизации измеряемого сигнала; неста­бильностью частоты счетных импульсов; порогом чувствительности схемы сравнения и нелинейностью пилообразного напряжения.

Существует несколько схемотехнических решений, используемых при создании времяимпульсных вольтметров. Рассмотрим две такие схемы.

Времяимпульсный вольтметр с генератором линей­но изменяющегося напряжения. Структурная схема времяим­пульсного цифрового вольтметра и временные диаграммы, поясняющие ее работу, представлены на рис. 5.14. Данный тип вольтметра включает АЦП с промежуточным преобразованием измеряемого напряжения в пропорцио­нальный интервал времени. В состав АЦП входят: генератор линейно изме­няющегося напряжения (ГЛИН); два устройства сравнения I и II; триггер Т; логическая схема И; генератор счетных импульсов; счетчик импульсов и цифровое отсчетное устройство.

Дискретный сигнал измерительной информации на выходе преобразова­теля имеет вид пачки счетных импульсов, число которых N пропорционально величине входного напряжения U'x (т.е. Щ. Линейно изменяющееся во времени напряжение £/глин с ГЛИН поступает на входы 1 обоих устройств сравнения. Другой вход устройства сравнения / соединен с корпусом.

В момент, когда на входе устройства сравнения / напряжение ишт = 0, на его выходе возникает импульс С/усЬ условно фиксирующий нулевой уровень входного сигнала. Этот импульс, подаваемый на единичный вход триггера Т, вызывает появление положительного напряжения на его выходе.

Возвращается триггер в исходное состояние импульсом С/ п, поступаю­щим с выхода устройства сравнения //. Импульс £/усП возникает в момент ра­венства измеряемого U'x и линейно изменяющегося напряжения £/„„„. Сформи­рованный в результате на выходе триггера импульс UT длительностью



(здесь S — коэффициент преобразования) подается на вход схемы И, на вто­рой вход которой поступает сигнал С/Гои с генератора счетных импульсов, следующих с частотой/, = УТ0.

На выходе схемы И сигнал Um появляется только при наличии импульсов £/т и"С/геи на обоих ее входах, т.е. счетные импульсы проходят через схему И тогда, когда присутствует сигнал на выходе триггера.

Количество прошедших через схему И счетных импульсов



подсчитывается счетчиком и отображается на индикаторе цифрового отсчетного устройства прибора.

Из двух последних соотношений получаем формулу для определения из­меряемого напряжения:



В вольтметре значение fJS выбирают равным 10™, где т = 1, 2, 3,... (число т определяет положение запятой в цифровом отсчете) поэтому прибор непо­средственно показывает значение измеряемого напряжения.

Рассмотренный цикл работы вольтметра периодически повторяется. Воз­врат ГЛИН в исходное состояние и подготовка схемы к очередному измере­нию осуществляется автоматически. По такому же принципу строятся циф­ровые вольтметры переменного тока. В них напряжение переменного тока предварительно выпрямляется и подается на устройство сравнения //.

Формула (5.13) не учитывает погрешности дискретности из-за несовпаде­ния момента появления счетных импульсов с началом и концом интервала At. Однако еще большую погрешность вносит фактор нелинейности коэффици­ента преобразования S. Недостатком метода времяимпульсного преобразова­ния является также его невысокая помехоустойчивость. Шумовая помеха, наложенная на измеряемое напряжение Ux, изменяет его и, следовательно, изменяет момент появления импульса £/ус11, определяющего длительность At времени счета. Поэтому вольтметры, построенные по данной схеме, являют­ся наименее точными в ряду цифровых.

Времяимпульсные вольтметры с двойным интегри­рованием.

Принцип работы вольтметра подобен принципу работы схемы с времяимпульсным преобразованием с тем отличием, что здесь в течение цикла измерения Т формируются два временных интервала Т\ и Г2. В первом интервале производится интегрирование измеряемого напряжения, а во вто­ром — опорного напряжения. Длительность цикла Т = Т\ + Т2 измерения за­ведомо устанавливается кратной периоду действующей на входе помехи. Это приводит к существенному повышению помехоустойчивости вольтметров.

Структурная схема вольтметра и временные диаграммы, поясняющие ее работу, представлены на рис. 5.15. Схема содержит входное устройство, двухпозиционный ключ, интегратор, источник образцового напряжения, уст­ройство сравнения, триггер Т, генератор счетных импульсов, управляющее устройство, логическую схему И, счетчик импульсов и цифровое отсчетное устройство. В начале цикла измерения при t = t0 устройство управления вы­рабатывает калиброванный импульс U длительностью Г, = TqK, где Го

период следования счетных импульсов; К — емкость счетчика. В момент появления фронта импульса Up ключ переводится в положение /, и с вход­ного устройства на интегратор поступает напряжение U'x, пропорциональ­ное измеряемому напряжению Ux.




Затем, на интервале Т\ = t\ - t0 происходит интегрирование напряжения U'x, (пропорциональ­ного измеряемому Ux) в результате чего нарастающее напряжение на выходе интегратора будет:



В момент t = f, управляющий сигнал U'J переводит ключ в положение 2

и на интегратор с источника образцового напряжения подается образцовое отрицательное напряжение С/ион. Одновременно с этим управляющий сигнал U" опрокидывает триггер.

Интегрирование напряжения С/ион происходит быстрее, так как в схеме ус­тановлено \UmJ > U'x. Интегрирование опорного напряжения продолжается до тех пор, пока выходное напряжение интегратора снова не станет равным нулю (при этом Т2 = t2- h). Поэтому в течение времени второго интервала на выходе интегратора формируется спадающее напряжение:



При этом длительность интервала интегрирования Т2 тем больше, чем выше амплитуда измеряемого напряжения U'x.

В момент времени t = t2 напряжение С/и на выходе интегратора становится равным нулю и устройство сравнения (второй вход соединен с корпусом) выдает сигнал на триггер, возвращая его в исходное состояние. На его выхо­де формируется импульс Ur длительностью Т2, поступающий на вход схемы И. На другой ее вход подается сигнал С/гси с генератора счетных импульсов. По окончании импульса UT, поступающего с триггера, процесс измерения прекращается.

Преобразование временного интервала Т2 в эквивалентное число импуль­сов N осуществляется так же, как и в предыдущем методе — путем заполне­ния интервала Т2 импульсами генератора счетных импульсов и подсчета их числа счетчиком. На счетчике, а значит и на цифровом отсчетном устройстве записывается число импульсов #(С/СЧ), пропорциональное измеряемому .напряжению Ux:




Это выражение приводит к следующим формулам:



Из последних соотношений получим



Из приведенных соотношений видно, что погрешность результата изме­рения зависит только от уровня образцового напряжения (а не от нескольких, как в кодоимпульсном приборе). Однако здесь также имеет место погреш­ность дискретности. Достоинство прибора — высокая помехозащищенность, так как он интегрирующий. На основе схем с двойным интегрированием вы­пускают приборы с более высоким классом точности, чем приборы с ГЛИН. Вольтметры этого типа имеют погрешность измерения 0,005...0,02 %.

Цифровые вольтметры наивысшего класса точности создаются комбини­рованными: в схемах сочетаются методы поразрядного уравновешивания и времяимпульсного интегрирующего преобразования.

Большинство серийных цифровых вольтметров переменного тока строят с применением преобразователей переменного тока в постоянный (детекторов) средневыпрямленного и среднего квадратического значения. Свойства этих приборов будут во многом определяться детекторами.

Цифровые мультиметры. Включение в схему цифрового вольт­метра микропроцессора и дополнительных преобразователей позволяет пре­вратить его в универсальный измерительный прибор — мультиметр. Цифро­вые мультиметры измеряют постоянное и переменное напряжение, силу тока, сопротивления резисторов, частоту электрических колебаний и т.д. При со­вместном использовании с осциллографом мультиметры позволяют измерять временные интервалы (период, длительность импульсов и пр.). Наличие в схеме вольтметра микропроцессора позволяет осуществлять автоматическую коррекцию погрешностей, автокалибровку и диагностику отказов.

На рис. 5.16 в качестве примера показан современный цифровой вольт­метр с микропроцес­сором. Основными устрой­ствами вольтметра явля­ются микропроцессор, АЦП, блоки нормализации сигналов и управления.

Блок нормализации сигналов с помощью соответствующих преобразова­телей приводит входные измеряемые параметры (напряжения переменного и постоянного тока, сопротивления постоянному току и пр.) к унифицирован­ному сигналу (м=), который подается на вход АЦП. Последний действует обычно по методу двойного интегрирования. Блок управления обеспечивает выбор режима работы для заданного вида измерений, управление АЦП, дис­плеем. Кроме того, он создает нужную конфигурацию системы измерения.

Основой блока управления является микропроцессор, который связан с другими узлами через сдвигающие регистры. Управление микропроцессором осуществляется с помощью клавиатуры, расположенной на панели управле­ния или через стандартный интерфейс (блок сопряжения; стык) подключае­мого канала связи. Программа работы микропроцессора хранится в постоян­ном запоминающем устройстве (ПЗУ) и обеспечивается с помощью опера­тивного запоминающего устройства (ОЗУ).

Для измерений используются встроенные высокостабильные и прецизи­онные резистивные делители опорного напряжения, дифференциальный уси­литель (ДУ) и ряд внешних элементов (аттенюатор и устройство выбора ре­жима, блок опорного напряжения иоп). Все импульсные и цифровые устрой­ства синхронизируются сигналами генератора тактовых импульсов.


6. Техника измерения напряжения


Для измерения напряжения необходимо правильно выбрать прибор с уче­том его диапазона измерения, частотного диапазона, класса точности, по­требления мощности из измерительной цепи, влияния формы сигнала на ре­зультат измерения. Эти параметры указаны в технической документации на прибор. При этом следует обратить внимание на следующие важные обстоя­тельства. При измерении гармонических напряжений частота измеряемого сигнала должна находиться в пределах рабочего диапазона частот (желатель­но не у крайнего предела). Следует проверить по паспорту, не имеет ли место дополнительная частотная погрешность в измеряемой точке. При измерении сигналов сложной формы частотный диапазон должен выбираться с учетом частот высших гармоник. В этом случае правильную информацию о дейст­вующем значении сигнала отображают только электронные приборы, имею­щие преобразователи среднего квадратического значения.

Если используется электронный прибор с амплитудным детектором, то по его показаниям можно определить действующее значение только для случая, когда известен коэффициент амплитуды измеряемого сигнала. Аналогично, при измерении прибором с преобразователем средневыпрямленного значе­ния для определения среднего квадратического значения сигнала нужно знать коэффициент его формы Кф сигн.

Тогда, с учетом формулы (5.7), получим:



Необходимо помнить, что приборы средневыпрямленного значения подчас вообще непригодны для измерения сигналов сложной формы, поскольку не обес­печивают необходимого частотного диапазона.

При измерениях на переменном токе с помощью электронных приборов необ­ходимо иметь в виду, что основная их масса имеет «закрытый вход» для постоян­ной составляющей сигнала. Это обстоятельство позволяет производить измере­ния в электронных схемах, где уровень сигнала значительно меньше, чем посто­янные напряжения режима покоя схемы. Однако при измерении импульсных сиг­налов приборами с амплитудными преобразователями на это следует обратить особое внимание.

С помощью временных диаграмм (рис. 5.17) показано, как можно оп­ределить параметры однополярных прямоугольных импульсов, амплиту­да Uр, длительность τ и частота f= 1/T следования которых известны.

Пусть шкала измерительного прибора отградуирована в дейст­вующих значениях синусоиды. Тогда показание прибора с амплитудным преобразователем измеряемого напряжения должно быть: . Рис. 5.17. Диаграммы к вольтметру с амплитудным преобразователем

Вследствие того, что прибор реагирует только на переменную составляющую сиг­нала, представленную на рис. 5.17 по отношению временной оси t’ показания прибора будут

или в зависимости от полярности его подключения,

где - положительное амплитудное зна­чение;

— отрицательное амплитудное значение импульса.

Формулы перевода напряжений получены из условия равенства нулю по­стоянной составляющей, т.е. площади S1 и S2 относительно временной оси t’ равны:



Для обеспечения высокой точности измерений их следует производить в точках шкалы, где измеряемая величина близка к номинальному значению, т.е. в конце шкалы. Кроме того, перед началом процесса измерений прибор следует вывести в номинальный режим, откалибровать и установить нулевое значение при закороченных входных зажимах.