Задача измерения постоянных напряжения и силы тока заключается в нахождении их значения и полярности. Целью измерения переменных напряжения и силы тока является определение какого-либо их параметра
Вид материала | Задача |
- Отчёт лабораторной работы №3. 3 по метрологии Тема, 26.53kb.
- Разработка урока по физике по теме Электрическая лампа накаливания и электронагревательные, 105.5kb.
- Задачи урока. Усвоить, что сила тока прямо пропорциональна напряжению на концах проводника,, 192.56kb.
- Программа вступительных испытаний в форме междисциплинарного экзамена для поступления, 67.49kb.
- Характеристики, 623.95kb.
- Преобразователь измерительный активной мощности трехфазного тока эп8508, 237.92kb.
- Метод измерения фазовых соотношений в стрелочных электроприводах с двигателями переменного, 6.25kb.
- Тема урока: «Активное сопротивление в цепи переменного тока», 53.01kb.
- Переходные процессы в линейных электрических цепях, 378.64kb.
- Задача: Часть I: 1 определение коэффициента передачи напряжения в каждой цепи, 99.51kb.
5. Цифровые вольтметры
По виду измеряемой величины цифровые вольтметры делятся на: вольтметры постоянного тока, переменного тока (средневыпрямленного или среднего квадратического значения), импульсные вольтметры — для измерения параметров видео- и радиоимпульсных сигналов и универсальные вольтметры, предназначенные для измерения напряжения постоянного и переменного тока, а также ряда других электрических и неэлектрических величин (сопротивления, температуры и прочее).
Принцип работы цифровых измерительных приборов основан на дискретном и цифровом представлении непрерывных измеряемых величин. Упрощенная структурная схема цифрового вольтметра приведена на рис. 5.10. Схема состоит из входного устройства, АЦП, цифрового отсчетного устройства и управляющего устройства.
Рис. 5.10. Упрощенная структурная схема цифрового вольтметра
Входное устройство содержит делитель напряжения; в вольтметрах переменного тока оно включает в себя также преобразователь переменного тока в постоянный.
АЦП преобразует аналоговый сигнал в цифровой, представляемый цифровом кодом. Процесс аналого-цифрового преобразования составляет сущность любого цифрового прибора, в том числе и вольтметра. Использование в АЦП цифровых вольтметров двоично-десятичного кода облегчает обратное преобразование цифрового кода в десятичное число, отражаемое цифровым отсчетным устройством.
Цифровое отсчетное устройство измерительного прибора регистрирует измеряемую величину. Управляющее устройство объединяет и управляет всеми узлами вольтметра.
По типу АЦП цифровые вольтметры могут быть разделены на четыре основные группы:
• кодоимпульсные (с поразрядным уравновешиванием);
• времяимпульсные;
• частотно-импульсные;
• пространственного кодирования.
В настоящее время цифровые вольтметры строятся чаще на основе кодо-импульсного и времяимпульсного преобразования.
АЦП вольтметров преобразуют сигнал постоянного тока в цифровой код, поэтому и цифровые вольтметры также считаются приборами постоянного тока. Для измерения напряжения переменного тока на входе вольтметра ставится преобразователь переменного напряжения в постоянное напряжение, чаще всего это детектор средневыпрямленного значения.
Проанализируем основные технические характеристики среднестатистического цифрового вольтметра постоянного тока:
• диапазон измерения: 100 мВ, 1 В, 10 В, 100 В, 1000 В;
• порог чувствительности (уровень квантования амплитуды напряжения или единица дискретности) на диапазоне напряжения в 100 мВ может быть 1мВ, 100 мкВ, 10 мкВ;
• количество знаков (длина цифровой шкалы) — отношение максимальной измеряемой величины на этом диапазоне к минимальной; например: диапазону измерения 100 мВ при уровне квантования 10 мкВ соответствует 104 знаков;
• входное сопротивление электрической схемы — очень высокое, обычно более 100 МОм;
• помехозащищенность — так как цифровые вольтметры обладают высокой чувствительностью, очень важно обеспечить хорошую помехозащищенность.
Упрощенная структурная схема, поясняющая принцип возникновения помех на входе цифрового вольтметра показана на рис. 5.11.
Здесь Eс — источник сигнала; Енв— помеха, приложенная к входу вольтметра (помеха нормального вида, наводки); Еов — помеха общего вида, возникающая из-за разности потенциалов корпусов источника сигнала и вольтметра; Rj — внутреннее сопротивление источника сигнала; Rвх — входное сопротивление вольтметра.
Рис. 5.11. Схема возникновения помех на входе цифрового вольтметра
Помеха общего вида возникает в электрической схеме из-за несовершенства источников питания на частотах 50 и 100 Гц, создает падение напряжения на сопротивлении r0 соединительного провода и переходит во входную цепь вольтметра, если сопротивление утечки Rут между клеммами и корпусом невелико. Если же одну из клемм прибора заземлить, то доля помехи общего вида, переходящая во входную цепь, увеличится. Поэтому при измерении малых сигналов пользуются изолированным от земли (корпуса) входом вольтметра.
Способы уменьшения влияния помех:
• использование экранированных проводов и изолированного входа вольтметра;
• применение интегрирующих вольтметров; при этом период помехи кратен времени измерения и помеха устраняется по периоду согласно формуле:
• включение на входе вольтметра фильтра с большим коэффициентом подавления помехи (60... 70 дБ).
В последнем случае коэффициент подавления помехи определяется следующим образом: Кпод = 201g (Uп вх /Uп вых), где Un вх — амплитуда помехи на входе фильтра, Uп вых — амплитуда помехи на его выходе.
Точность цифровых вольтметров. Распределение погрешности по диапазону измерения напряжений определяется пределом допускаемой относительной основной погрешности , характеризующей класс точности средства измерения:
где и — измеряемое напряжение; UK— конечное значение диапазона измерений; с, d — соответственно относительные приведенные суммарная и аддитивная составляющие погрешности.
Быстродействие. Современные схемы АЦП, применяемые в цифровых вольтметрах, могут обеспечить очень большое быстродействие, однако из соображений точной регистрации полученного результата и усреднения сетевой помехи у цифровых вольтметров оно уменьшается примерно до 20...50 измерений в секунду.
Виды и типы цифровых вольтметров (факультативно).
Кодоимпульсные цифровые вольтметры
В кодоимпульсных цифровых вольтметрах (в вольтметрах с поразрядным уравновешиванием) реализуется принцип компенсационного метода измерения напряжения. Упрощенная структурная схема такого вольтметра представлена на рис. 5.12.
Измеряемое напряжение U'x, полученное с входного устройства, сравнивается с компенсирующим напряжением UK, вырабатываемым прецизионным делителем и источником опорного напряжения. Компенсирующее напряжение имеет несколько уровней, квантованных в соответствии с двоично-десятичной системой счисления. Например, двухразрядный цифровой вольтметр, предназначенный для измерения напряжений до 100 В, может включать следующие уровни напряжений: 80, 40, 20, 10, 8, 4, 2, 1 В.
Сравнение измеряемого U'x и компенсирующего UK напряжений производится последовательно по командам управляющего устройства. Процесс сравнения напряжений показан на рис. 5.13. Управляющие импульсы Uy через определенные интервалы времени переключают сопротивления прецизионного делителя таким образом, что на выходе делителя последовательно возникают значения напряжения: 80, 40, 20, 10, 8, 4, 2, 1 В; одновременно к соответствующему выходу прецизионного делителя подключается устройство сравнения.
Если UK > U'x, то с устройства сравнения поступает сигнал С/ср на отключение в делителе соответствующего звена, так, чтобы снять сигнал С/к. Если UK < U'x, то сигнал с устройства сравнения не поступает. После окончания процесса сравнения полученный сигнал С/юд положения ключей прецизионного делителя и является тем кодом, который считывается цифровым отсчетным устройством.
На рис. 5.13 для наглядности показан процесс кодирования аналогового напряжения с амплитудой 63 В, из которого видно, что код, соответствующий этому сигналу, будет 01100011.
Процесс измерения напряжения в кодоимпульсном приборе напоминает взвешивание на весах, поэтому приборы иногда называют поразрядно-уравновешивающими. Точность кодоимпульсного прибора зависит от стабильности опорного напряжения, точности изготовления делителя, порога срабатывания сравнивающего устройства.
Для создания нормальной помехозащищенности (60...70 дБ) на входе приборов ставится помехоподавляющий фильтр. В целом такой цифровой прибор обладает хорошими техническими характеристиками и используется как лабораторный. Первые цифровые приборы создавались по методу взвешивания, но сейчас более широкое распространение получили приборы времяимпульсного типа.
Вольтметры с времяимпульсным преобразованием
В основе принципа действия вольтметра времяимпульсного (временнбго) типа лежит преобразование с помощью АЦП измеряемого напряжения в пропорциональный интервал времени, который заполняется счетными импульсами, следующими с известной стабильной частотой следования. В результате такого преобразования дискретный сигнал измерительной информации на выходе преобразователя имеет вид пачки счетных импульсов, число которых пропорционально уровню измеряемого напряжения.
Погрешность измерений времяимпульсных вольтметров определяется рядом факторов: погрешностью дискретизации измеряемого сигнала; нестабильностью частоты счетных импульсов; порогом чувствительности схемы сравнения и нелинейностью пилообразного напряжения.
Существует несколько схемотехнических решений, используемых при создании времяимпульсных вольтметров. Рассмотрим две такие схемы.
Времяимпульсный вольтметр с генератором линейно изменяющегося напряжения. Структурная схема времяимпульсного цифрового вольтметра и временные диаграммы, поясняющие ее работу, представлены на рис. 5.14. Данный тип вольтметра включает АЦП с промежуточным преобразованием измеряемого напряжения в пропорциональный интервал времени. В состав АЦП входят: генератор линейно изменяющегося напряжения (ГЛИН); два устройства сравнения I и II; триггер Т; логическая схема И; генератор счетных импульсов; счетчик импульсов и цифровое отсчетное устройство.
Дискретный сигнал измерительной информации на выходе преобразователя имеет вид пачки счетных импульсов, число которых N пропорционально величине входного напряжения U'x (т.е. Щ. Линейно изменяющееся во времени напряжение £/глин с ГЛИН поступает на входы 1 обоих устройств сравнения. Другой вход устройства сравнения / соединен с корпусом.
В момент, когда на входе устройства сравнения / напряжение ишт = 0, на его выходе возникает импульс С/усЬ условно фиксирующий нулевой уровень входного сигнала. Этот импульс, подаваемый на единичный вход триггера Т, вызывает появление положительного напряжения на его выходе.
Возвращается триггер в исходное состояние импульсом С/ п, поступающим с выхода устройства сравнения //. Импульс £/усП возникает в момент равенства измеряемого U'x и линейно изменяющегося напряжения £/„„„. Сформированный в результате на выходе триггера импульс UT длительностью
(здесь S — коэффициент преобразования) подается на вход схемы И, на второй вход которой поступает сигнал С/Гои с генератора счетных импульсов, следующих с частотой/, = УТ0.
На выходе схемы И сигнал Um появляется только при наличии импульсов £/т и"С/геи на обоих ее входах, т.е. счетные импульсы проходят через схему И тогда, когда присутствует сигнал на выходе триггера.
Количество прошедших через схему И счетных импульсов
подсчитывается счетчиком и отображается на индикаторе цифрового отсчетного устройства прибора.
Из двух последних соотношений получаем формулу для определения измеряемого напряжения:
В вольтметре значение fJS выбирают равным 10™, где т = 1, 2, 3,... (число т определяет положение запятой в цифровом отсчете) поэтому прибор непосредственно показывает значение измеряемого напряжения.
Рассмотренный цикл работы вольтметра периодически повторяется. Возврат ГЛИН в исходное состояние и подготовка схемы к очередному измерению осуществляется автоматически. По такому же принципу строятся цифровые вольтметры переменного тока. В них напряжение переменного тока предварительно выпрямляется и подается на устройство сравнения //.
Формула (5.13) не учитывает погрешности дискретности из-за несовпадения момента появления счетных импульсов с началом и концом интервала At. Однако еще большую погрешность вносит фактор нелинейности коэффициента преобразования S. Недостатком метода времяимпульсного преобразования является также его невысокая помехоустойчивость. Шумовая помеха, наложенная на измеряемое напряжение Ux, изменяет его и, следовательно, изменяет момент появления импульса £/ус11, определяющего длительность At времени счета. Поэтому вольтметры, построенные по данной схеме, являются наименее точными в ряду цифровых.
Времяимпульсные вольтметры с двойным интегрированием.
Принцип работы вольтметра подобен принципу работы схемы с времяимпульсным преобразованием с тем отличием, что здесь в течение цикла измерения Т формируются два временных интервала Т\ и Г2. В первом интервале производится интегрирование измеряемого напряжения, а во втором — опорного напряжения. Длительность цикла Т = Т\ + Т2 измерения заведомо устанавливается кратной периоду действующей на входе помехи. Это приводит к существенному повышению помехоустойчивости вольтметров.
Структурная схема вольтметра и временные диаграммы, поясняющие ее работу, представлены на рис. 5.15. Схема содержит входное устройство, двухпозиционный ключ, интегратор, источник образцового напряжения, устройство сравнения, триггер Т, генератор счетных импульсов, управляющее устройство, логическую схему И, счетчик импульсов и цифровое отсчетное устройство. В начале цикла измерения при t = t0 устройство управления вырабатывает калиброванный импульс U длительностью Г, = TqK, где Го —
период следования счетных импульсов; К — емкость счетчика. В момент появления фронта импульса Up ключ переводится в положение /, и с входного устройства на интегратор поступает напряжение U'x, пропорциональное измеряемому напряжению Ux.
Затем, на интервале Т\ = t\ - t0 происходит интегрирование напряжения U'x, (пропорционального измеряемому Ux) в результате чего нарастающее напряжение на выходе интегратора будет:
В момент t = f, управляющий сигнал U'J переводит ключ в положение 2
и на интегратор с источника образцового напряжения подается образцовое отрицательное напряжение С/ион. Одновременно с этим управляющий сигнал U" опрокидывает триггер.
Интегрирование напряжения С/ион происходит быстрее, так как в схеме установлено \UmJ > U'x. Интегрирование опорного напряжения продолжается до тех пор, пока выходное напряжение интегратора снова не станет равным нулю (при этом Т2 = t2- h). Поэтому в течение времени второго интервала на выходе интегратора формируется спадающее напряжение:
При этом длительность интервала интегрирования Т2 тем больше, чем выше амплитуда измеряемого напряжения U'x.
В момент времени t = t2 напряжение С/и на выходе интегратора становится равным нулю и устройство сравнения (второй вход соединен с корпусом) выдает сигнал на триггер, возвращая его в исходное состояние. На его выходе формируется импульс Ur длительностью Т2, поступающий на вход схемы И. На другой ее вход подается сигнал С/гси с генератора счетных импульсов. По окончании импульса UT, поступающего с триггера, процесс измерения прекращается.
Преобразование временного интервала Т2 в эквивалентное число импульсов N осуществляется так же, как и в предыдущем методе — путем заполнения интервала Т2 импульсами генератора счетных импульсов и подсчета их числа счетчиком. На счетчике, а значит и на цифровом отсчетном устройстве записывается число импульсов #(С/СЧ), пропорциональное измеряемому .напряжению Ux:
Это выражение приводит к следующим формулам:
Из последних соотношений получим
Из приведенных соотношений видно, что погрешность результата измерения зависит только от уровня образцового напряжения (а не от нескольких, как в кодоимпульсном приборе). Однако здесь также имеет место погрешность дискретности. Достоинство прибора — высокая помехозащищенность, так как он интегрирующий. На основе схем с двойным интегрированием выпускают приборы с более высоким классом точности, чем приборы с ГЛИН. Вольтметры этого типа имеют погрешность измерения 0,005...0,02 %.
Цифровые вольтметры наивысшего класса точности создаются комбинированными: в схемах сочетаются методы поразрядного уравновешивания и времяимпульсного интегрирующего преобразования.
Большинство серийных цифровых вольтметров переменного тока строят с применением преобразователей переменного тока в постоянный (детекторов) средневыпрямленного и среднего квадратического значения. Свойства этих приборов будут во многом определяться детекторами.
Цифровые мультиметры. Включение в схему цифрового вольтметра микропроцессора и дополнительных преобразователей позволяет превратить его в универсальный измерительный прибор — мультиметр. Цифровые мультиметры измеряют постоянное и переменное напряжение, силу тока, сопротивления резисторов, частоту электрических колебаний и т.д. При совместном использовании с осциллографом мультиметры позволяют измерять временные интервалы (период, длительность импульсов и пр.). Наличие в схеме вольтметра микропроцессора позволяет осуществлять автоматическую коррекцию погрешностей, автокалибровку и диагностику отказов.
На рис. 5.16 в качестве примера показан современный цифровой вольтметр с микропроцессором. Основными устройствами вольтметра являются микропроцессор, АЦП, блоки нормализации сигналов и управления.
Блок нормализации сигналов с помощью соответствующих преобразователей приводит входные измеряемые параметры (напряжения переменного и постоянного тока, сопротивления постоянному току и пр.) к унифицированному сигналу (м=), который подается на вход АЦП. Последний действует обычно по методу двойного интегрирования. Блок управления обеспечивает выбор режима работы для заданного вида измерений, управление АЦП, дисплеем. Кроме того, он создает нужную конфигурацию системы измерения.
Основой блока управления является микропроцессор, который связан с другими узлами через сдвигающие регистры. Управление микропроцессором осуществляется с помощью клавиатуры, расположенной на панели управления или через стандартный интерфейс (блок сопряжения; стык) подключаемого канала связи. Программа работы микропроцессора хранится в постоянном запоминающем устройстве (ПЗУ) и обеспечивается с помощью оперативного запоминающего устройства (ОЗУ).
Для измерений используются встроенные высокостабильные и прецизионные резистивные делители опорного напряжения, дифференциальный усилитель (ДУ) и ряд внешних элементов (аттенюатор и устройство выбора режима, блок опорного напряжения иоп). Все импульсные и цифровые устройства синхронизируются сигналами генератора тактовых импульсов.
6. Техника измерения напряжения
Для измерения напряжения необходимо правильно выбрать прибор с учетом его диапазона измерения, частотного диапазона, класса точности, потребления мощности из измерительной цепи, влияния формы сигнала на результат измерения. Эти параметры указаны в технической документации на прибор. При этом следует обратить внимание на следующие важные обстоятельства. При измерении гармонических напряжений частота измеряемого сигнала должна находиться в пределах рабочего диапазона частот (желательно не у крайнего предела). Следует проверить по паспорту, не имеет ли место дополнительная частотная погрешность в измеряемой точке. При измерении сигналов сложной формы частотный диапазон должен выбираться с учетом частот высших гармоник. В этом случае правильную информацию о действующем значении сигнала отображают только электронные приборы, имеющие преобразователи среднего квадратического значения.
Если используется электронный прибор с амплитудным детектором, то по его показаниям можно определить действующее значение только для случая, когда известен коэффициент амплитуды измеряемого сигнала. Аналогично, при измерении прибором с преобразователем средневыпрямленного значения для определения среднего квадратического значения сигнала нужно знать коэффициент его формы Кф сигн.
Тогда, с учетом формулы (5.7), получим:
Необходимо помнить, что приборы средневыпрямленного значения подчас вообще непригодны для измерения сигналов сложной формы, поскольку не обеспечивают необходимого частотного диапазона.
При измерениях на переменном токе с помощью электронных приборов необходимо иметь в виду, что основная их масса имеет «закрытый вход» для постоянной составляющей сигнала. Это обстоятельство позволяет производить измерения в электронных схемах, где уровень сигнала значительно меньше, чем постоянные напряжения режима покоя схемы. Однако при измерении импульсных сигналов приборами с амплитудными преобразователями на это следует обратить особое внимание.
С помощью временных диаграмм (рис. 5.17) показано, как можно определить параметры однополярных прямоугольных импульсов, амплитуда Uр, длительность τ и частота f= 1/T следования которых известны.
Пусть шкала измерительного прибора отградуирована в действующих значениях синусоиды. Тогда показание прибора с амплитудным преобразователем измеряемого напряжения должно быть: . Рис. 5.17. Диаграммы к вольтметру с амплитудным преобразователем
Вследствие того, что прибор реагирует только на переменную составляющую сигнала, представленную на рис. 5.17 по отношению временной оси t’ показания прибора будут
или в зависимости от полярности его подключения,
где - положительное амплитудное значение;
— отрицательное амплитудное значение импульса.
Формулы перевода напряжений получены из условия равенства нулю постоянной составляющей, т.е. площади S1 и S2 относительно временной оси t’ равны:
Для обеспечения высокой точности измерений их следует производить в точках шкалы, где измеряемая величина близка к номинальному значению, т.е. в конце шкалы. Кроме того, перед началом процесса измерений прибор следует вывести в номинальный режим, откалибровать и установить нулевое значение при закороченных входных зажимах.