Вопросы к экзамену по предмету «Аппаратное обеспечение эвм»

Вид материалаВопросы к экзамену

Содержание


1. Состав программного обеспечения ЭВМ.
Программное обеспечение (ПО)
КРОССОВОЕ программное обеспечение (КПО)
ТЕСТОВОЕ программное обеспечение (ТПО)
СИСТЕМНОЕ программное обеспечение (СПО)
Операционная система (ос)
Система программирования (сп)
2. Понятия операционной системы назначение и основные функции.
Свойства операционной системы
Устройства эвм
Внешнее  ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
Устройства эвм
Поколения ЭВМ
Первое поколение ЭВМ (1948 — 1958 гг.)
Второе поколение ЭВМ (1959 — 1967 гг.)
Третье поколение ЭВМ (1968 — 1973 гг.)
Четвертое поколение ЭВМ (1974 — 1982 гг.)
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   42

1. Состав программного обеспечения ЭВМ.


Электронно-вычислительная машина или, как теперь ее называют - компьютер, состоит из двух взаимосвязанных и взаимодействующих компонентов: электронных блоков (аппаратуры) и программного обеспечения. Состав аппаратуры был рассмотрен в предыдущей лекции, поэтому мы переходим к рассмотрению второй составляющей компьютера - программному обеспечению.

Программное обеспечение (ПО) - совокупность программ и правил, позволяющая использовать ЭВМ для решения различных задач.

Программное обеспечение микро ЭВМ разделяются ПРИКЛАДНОЕ, СИСТЕМНОЕ , кроссовое , тестовое :

ПРИКЛАДНОЕ программное обеспечение (ППО) - совокупность программ, предназначенное для решения конкретных задач. Прикладное программное обеспечение разрабатывается самим пользователем в зависимости от интересующей его задачи. В некоторых источниках можно встретить деление прикладного программного обеспечения на кроссовое и тестовое.

КРОССОВОЕ программное обеспечение (КПО) - предназначено для работы с соответствующей микро ЭВМ и ее программами, но реализованное на вычислительных машинах других классов (больших или мини ЭВМ) или на микро ЭВМ другого типа.

ТЕСТОВОЕ программное обеспечение (ТПО) - совокупность предназначенных для проверки работоспособности устройств, входящих в состав микро ЭВМ на стадиях ее изготовления, эксплуатации и ремонта.

СИСТЕМНОЕ программное обеспечение (СПО) - совокупность программ и языковых средств, предназначенных для поддержания функционирования ЭВМ и наиболее эффективного выполнения его целевого назначения. По функциональному назначению в системном программном обеспечение можно выделить две системы

- операционную систему
- систему программирования

ОПЕРАЦИОННАЯ СИСТЕМА (ОС) - комплекс программ предназначенный для обеспечения определенного уровня эффективности вычислительной системы за счет автоматизированного управления ее работой и представляемого пользователям услуг. Эту систему можно рассматривать как программное продолжение и расширения аппаратуры микроЭВМ.

СИСТЕМА ПРОГРАММИРОВАНИЯ (СП) - совокупность языка программирования и соответствующего ему языкового процессора, обеспечивающие автоматизацию отработки и отладки программ. Программные компоненты системы программирования работают под управлением операционной системы на ровне с прикладными программами пользователя.

2.

Работа сотрудников, непосредственно связанных с компьютером, а соответственно с дополнительным вредным воздействием целой группы факторов, существенно снижает производительность их труда. К таким факторам необходимо отнести:

повышенный уровень шума при работе ПЭВМ и периферийных устройств;

электромагнитное излучение;

ионизирующее излучение от экрана дисплея ПЭВМ;

возможность повышенной запыленности рабочей зоны;

изменение микроклимата и тепловыделение;

наличие опасного значения напряжения в электрической цепи, из-за контакта с которой может произойти поражение человека;

перенапряжение зрительных анализаторов.

1.1 Характеристика электробезопасности

При эксплуатации ЭВМ возникает следующий опасный фактор: опасный уровень напряжения в электрической цепи, замыкание которой может произойти через человека. Поражение электрическим током может возникнуть в результате прикосновения к оголенным проводам, находящимся под напряжением или к корпусам приборов, на которых вследствие пробоя возникло напряжение.

Электропитание ЭВМ осуществляется от сети переменного тока напряжением 220 В и частотой 50 Гц.

Перед подключением ЭВМ к сети обеспечивается либо наличие провода защитного заземления в розетке подключения ЭВМ, либо наличие заземляющего контура для внешнего заземления ЭВМ через заземляющий болт на задней крышке кожуха. Максимальное сопротивление цепи заземления 4 Ом.

Кроме того, токопроводящие части (провода, кабели) изолируются, приборы заземляются.

Обслуживающий персонал должен быть технически грамотен, а правила техники безопасности эксплуатации электроустановок должны соблюдаться неукоснительно.

При работе аппаратуры запрещается:

проверять на ощупь наличие напряжения токоведущих частей аппаратуры;

применять для соединения блоков и приборов провода с поврежденной изоляцией;

производить работу и монтаж в аппаратуре, находящейся под напряжением;

подключать блоки и приборы к работающей аппаратуре.

Согласно классификации правил эксплуатации электроустановок, помещение должно соответствовать первому классу: сухое, беспыльное помещение с нормальной температурой воздуха и изолированными полами.

Особенности характера и условий труда работников, работающих с видеотерминалом и клавиатурой - значительное умственное напряжение, постоянная статическая нагрузка, обусловленная относительно неподвижной рабочей позой и другие физические и нервно - психические нагрузки - приводят к изменению у работников функционального состояния центральной нервной системы, нервно-мышечного аппарата рук, шеи, плеч, спины, напряжению зрительного аппарата. У работников появляются боли, зрительная усталость, раздражительность, общее утомление.

Снижения влияния этих факторов и сохранения высокой работоспособности можно достичь рациональной организацией режима труда и отдыха, который предусматривает периодические перерывы и производственную гимнастику. Гимнастика должна включать специальные упражнения для глаз и для снятия утомления от статического напряжения.

Регламентированные перерывы с интервалом 5-10 минут используются на пассивный отдых и для проведения специальной гимнастики работниками индивидуально, в зависимости от усталости глаз.

В регламентированные перерывы с интервалом 15 минут необходимо проводить комплекс физических упражнений для снятия общего утомления. Гимнастику можно выполнять сидя на рабочем месте.

Большое значение при работе имеет правильная планировка рабочего места.

Предпочтительнее сидение, имеющее выемку, соответствующую форме бедер, и наклон назад. Спинка стула должна быть изогнутой формы, обнимающей поясницу.

Все необходимое для работы должно быть легко доступным. Уровень глаз при вертикально расположенном экране должен приходится на цент или 2/3 высоты экрана. Расстояние между монитором и лицом оператора должно быть не менее, чем 40 см. клавиатура располагается в 10 см от края стола, что позволяет запястьям рук опираться на стол.

Для защиты воздуха рабочей зоны и атмосферы от повышенной запыленности применяется система вентиляции. В данном случае необходимо использовать приточную вентиляцию

Повышенный уровень шума, возникающий при работе ПЭВМ и периферийных устройств, вредно воздействует на нервную систему человека, снижая производительность труда, способствуя возникновению травм.

При длительном воздействии шума на организм человека происходят нежелательные явления: снижается острота слуха, повышается кровяное давление. Кроме того, шум влияет на общее состояние человека - возникает чувство неуверенности, стесненности, плохого самочувствия.

Для снижения уровня шума в помещении, где эксплуатируется вычислительная техника, проводят:

Акустическая обработку помещения (звукоизоляция стен, окон, дверей, потолка, установка штучных звукопоглощателей);

Ослаблении шума самих источников, полностью выполнив требования по звукоизоляции оборудования, изложенные в технической документации на данное оборудование;

Размещение более тихих помещений вдали от шумных;

Мероприятия по борьбе с шумом на пути его распространения (звукоизолирующие ограждения, кожухи, экраны).

Уровень шума на рабочем месте должен соответствовать требованиям ГОСТ 12.1.003-83 и составлять:

для помещений, где работают программисты и операторы видеотерминалов - не более 50 дБ;


Требования к освещению помещений и рабочих мест ПЭВМ

1. Естественное освещение должно осуществляться через светопроёмы, ориентированные преимущественно на север и северо-восток и обеспечивать коэффициент естественной освещенности (КЕО) от 1,2% до 1,5%. Рабочие места должны быть расположены так, чтобы естественный свет падал сбоку, преимущественно слева.

2. Искусственное освещение в помещениях эксплуатации ПЭВМ должно осуществляться системой общего равномерного освещения. В производственных и административно-общественных помещениях, в случае преимущественной работы с документами, допускается применение системы комбинированного освещения (к общему освещению дополнительно устанавливаются светильники местного освещения, предназначенные для освещения зоны расположения документов).

3. Освещенность на поверхности стола в зоне размещения рабочего документа должна быть 300 - 500 лк. Допускается установка светильников местного освещения для подсветки документов. Местное освещение не должно создавать бликов на поверхности экрана и увеличивать освещенность экрана более 300 лк.

4. Следует ограничивать прямую блесткость от источников освещения, при этом яркость светящихся поверхностей (окна, светильники и др.), находящихся в поле зрения, должна быть не более 200 кд/кв.м.

5. Следует ограничивать отраженную блесткость на рабочих поверхностях (экран, стол, клавиатура и др.) за счет правильного выбора типов светильников и расположения рабочих мест по отношению к источникам естественного и искусственного освещения, при этом яркость бликов на экране ВДТ и ПЭВМ не должна превышать 40 кд/кв.м и яркость потолка, при применении системы отраженного освещения, не должна превышать 200 кд/кв.м.

6. Показатель ослепленности для источников общего искусственного освещения в производственных помещениях должен быть не более 20, показатель дискомфорта в административно-общественных помещениях - не более 40, в дошкольных и учебных помещениях - не более 25.

7. Следует ограничивать неравномерность распределения яркости в поле зрения пользователя ВДТ и ПЭВМ, при этом соотношение яркости между рабочими поверхностями не должно превышать 3:2 - 5:1, а между рабочими поверхностями и поверхностями стен и оборудования 10:1.

8. В качестве источников света при искусственном освещении должны применяться преимущественно люминесцентные лампы типа ЛБ. При устройстве отраженного освещения в производственных и административно-общественных помещениях допускается применение металлогалогенных ламп мощностью до 250 Вт. Допускается применение ламп накаливания в светильниках местного освещения.

9. Общее освещение следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при рядном расположении ПЭВМ. При периметральном расположении компьютеров линии светильников должны располагаться локализовано над рабочим столом ближе к его переднему краю, обращенному к оператору.



ГОУ СПО

Колледж архитектуры и

Строительства № 7

Экзаменационный билет

№ 2

Утверждаю :

Зам. Директора по УМР

_______________________

Рассмотрено на заседании ПЦК протокол №

От _____ __________ 2011 г.

Председатель предметной (цикловой) комиссии



По предметам : «Программное обеспечение ЭВМ» , «Аппаратное обеспечение ЭВМ» , «Обработка информации на ЭВМ»



  1. Операционные системы , назначение операционных систем
  2. История развития ЭВМ , поколения ЭВМ ?

3.


Преподаватели : Подосетникова Т.С.

Галкина Т.И.

2. Понятия операционной системы назначение и основные функции. 


Рассматриваемая тема полностью посвящена операционным системам микроЭВМ, поэтому более подробно остановимся на свойствах операционной системы и ресурсах находящихся под управлением операционной системы.

Свойства операционной системы:

1. НАДЕЖНОСТЬ. Операционная система должна быть надежна, как и аппаратура на которой работает. Она должна быть в состоянии определение и диагностирование ошибок, а также восстановления после большинства характерных ошибок, произошедших по вине пользователя. Она должна защищать пользователя от их же собственных ошибок или по крайней мере минимизировать вред, который они могут оказать на все программное окружение, находящиеся в микроЭВМ.

2. ЗАЩИТА. Операционная система должна защищать выполняемые задачи от взаимного влияния их друг на друга.

3. ПРЕДСКАЗУЕМОСТЬ. Операционная система должна отвечать на запросы пользователя предсказуемым образом. Результат выполнения команд пользователя должны быть одним и тем же вне зависимости от последовательности, в которой эти команды посылаются на исполнение (при соблюдении установленных в системе правил).

4. УДОБСТВА. Операционная система предлагается пользователю потому, что она намного облегчает его работу и освобождает его от бремени задач по определению различных ресурсов и задач по управлению этими ресурсами. Система должна быть спроектирована с учетом основных факторов человеческой психологии.

5. ЭФФЕКТИВНОСТЬ. При распределении ресурсов операционная система должна максимально повысить использование системных ресурсов пользователем. Сама система не должна использовать большое количество ресурсов, так как эти ресурсы становятся недостаточными для удовлетворения запросов пользователя.

6. ГИБКОСТЬ. Системные операции могут настраиваться для согласования поведения пользователя. Ресурсы могут быть увеличены (уменьшены) для того, чтобы улучшить эффективность и доступность.

7. РАСШИРЯЕМОСТЬ. В процессе эволюции к операционной системе могут быть добавлены новые программные средства.

8. ЯСНОСТЬ. Пользователь может оставаться в неведении относительно вещей, существующих ниже уровня интерфейсной системы.

В тоже время он должен иметь возможность узнать о системе столько, сколько он хочет. В данном случае интерфейсной системой являются правила и функциональные характеристики средств подключения и взаимодействия устройств вычислительной машины.

Ресурсы ЭВМ, находящиеся под управлением операционной системы.

Причиной существования операционных систем являются задачи по распределению ресурсов и задач по управлению этими ресурсами.

Цель управления ресурсами заключается в том, чтобы добиться эффективного использования ресурсов пользователем, а также освободить пользователя от бремени задач по оперированию ресурсами.

Под ресурсами микроЭВМ подразумевается следующее: процессорное время, оперативная память, периферийные устройства и математическое обеспечение.

1.ПРОЦЕССОРНОЕ ВРЕМЯ - время доступа к процессору и, следовательно, время счета. Большинство задач при вычислении их на ЭВМ тратит половину времени на ожидание завершения операций ввода/вывода. Экономическая необходимость вынуждает разделять ЭВМ между многими пользователями, одновременно работающими. Таким образом, для эффективного использования процессорного времени требуется сложный механизм разделения времени - механизм, использующий одновременную работу центрального процессора (ЦП) и устройства ввода/вывода информации.

2.ОПЕРАТИВНАЯ ПАМЯТЬ. Планирование доступа к оперативной памяти неотъемлемо от доступа к центральному процессору. Программа может выполняться, если есть доступ к центральному процессору, она оказывается в оперативной памяти и исполняется, так как память дефицитна, система должна использовать ее с максимальной эффективностью. Есть много предложений использовать оперативную память между несколькими пользователями. Цель этих предложений максимально сократить пустые пространства оперативной памяти, возникающие из - за различных объектов и особенностей программ пользователя.

3.ПЕРИФЕРИЙНЫЕ УСТРОЙСТВА. С большинством периферийных устройств в каждый момент времени может работать только один пользователь. Такая работа периферийных устройств может привести к неэффективному их использованию, если время счета счета программы довольно велико. Устройства с быстрым доступом разделяются между пользователями с помощью системы управления файлами. Задержки, возникающие при работе с периферийными устройствами быстрого доступа, вполне удовлетворительны виду скорости этих устройств и в виду интервалов времени между программными запросами ввода/вывода.

Так как большинства миниЭВМ имеют по одному АЦПУ. Медленность работы этого устройства может привести к приостановке выполнения программ. Для того, чтобы этого не было в программе операционная система обслуживания ввода/вывода выключается механизм, который называется СПУЛИНГОМ. Спулинг - процедура автоматической записи на магнитный диск данных, предназначенных для вывода на принтер, и распечатки их по мере готовности последнего.

4. РЕСУРСЫ МАТЕМАТИЧЕСКОГО ОБЕСПЕЧЕНИЯ - представляют собой доступные пользователю функции, предназначенные для работы с данными и для контроля за выполнением программ. Среди этих ресурсов находятся сервисные программы по управлению файлами и по обслуживанию ввода/вывода, программ системного планирования и системные библиотеки.

При рассмотрении операционной системы необходимо остановится на типах и составе операционных систем.

Как было сказано раньше, назначение операционной системы это распределение ресурсов микроЭВМ. Освободив пользователя от забот по распределению ресурсов, операционная система может обеспечить функционирование микроЭВМ в одном из трех режимов: однопрограммный; многопрограммный; многозадачный.

УСТРОЙСТВА ЭВМ
 ¦
ЦЕНТРАЛЬНЫЙ +--------¬   --------¬ ---------¬ ---------¬
ПРОЦЕССОР  ¦задача 1¦ ¦задача 1¦ ¦задача 2¦ ¦задача 2¦
 +--------+---+--------+---+--------+---+--------+---0T->
ВНЕШНЕЕ  ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
УСТРОЙСТВО  ¦ ¦в/в¦ ¦ ¦ ¦ ¦ ¦ ¦
1 (АЦПУ)  ¦ ¦ ¦ ¦ ¦ ¦в/в¦ ¦ ¦
 +--------+---+--------+---+--------+---+--------+---+->
ВНЕШНЕЕ  ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
УСТРОЙСТВО  ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
2 (НГМД)  ¦ ¦ ¦ ¦в/в¦ ¦ ¦ ¦в/в¦
 L--------+---+--------+---+--------+---+--------+---+->
Рис.1 время t

ОДНОПРОГРАММНЫЙ РЕЖИМ - режим, в котором все ресурсы ЭВМ представляется лишь одной программе, которая выполняет обработку данных. На рисунке 1 изображена диаграмма работы двух программ в однопрограммном режиме.

МНОГОПРОГРАММНЫЙ РЕЖИМ - МУЛЬТИПРОГРАММНЫЙ режим, в котором несколько независимых друг от друг программ выполняют обработку данных одновременно. При этом программы делят ресурсы ЭВМ между собой. Основой мультипрограммного режима является совмещение во время работы центрального процессора и выполнение операций периферийных устройств. Достоинство этого режима перед однопрограммным режимом более эффективное использование ресурсов ЭВМ и повышение ее пропускной способности. На рисунке 2 изображена диаграмма работы двух программ в мультипрограммном режиме.

УСТРОЙСТВА ЭВМ
 ¦
ЦЕНТРАЛЬНЫЙ ¦--------T--------T--------T--------T--------¬
ПРОЦЕССОР  ¦задача 1¦задача 2¦задача 1¦задача 2¦задача 1¦
 +--------+--------+--------+--------+--------+->
ВНЕШНЕЕ  ¦ ¦ввод ¦ ¦ввод ¦ввод ¦
УСТРОЙСТВО  ¦ ¦ вывод ¦ ¦ вывод ¦ вывод ¦
1 (АЦПУ)  ¦ ¦задачи 1¦ ¦задачи 1¦задачи 2¦
 +--------+--------+--------+--------+--------+->
ВНЕШНЕЕ  ¦ ¦ ¦ввод ¦ ¦ ¦
УСТРОЙСТВО  ¦ ¦ ¦ вывод ¦ ¦ ¦
2 (НГМД)  ¦ ¦ ¦задачи 2¦ ¦ ¦
 L--------+--------+--------+--------+--------+->

МНОГОЗАДАЧНЫЙ РЕЖИМ - режим мультизадачный, предусматривающий параллельное, т. е. одновременное выполнение более чем одной программы по разным задачам, но использующих результат одной задачи как исходные данные для другой, другими словами в операционной системе должны быть средства, позволяющие задачам взаимодействовать друг с другом. В отличие от многопрограммного режима, где используется принцип разделения времени между программами, в этом режиме идет параллельное вычисление по всем задачам.

Многопрограммный режим возможен только в мультисистеме (системе с несколькими ЦП).

Операционная система является посредником между ЭВМ и пользователем. Операционная система осуществляет анализ запросов пользователя и обеспечивает их выполнение. Запрос представляется последовательностью команд на особом языке директив операционной системы.

Операционная система может выполнять запросы в разных режимах, поэтому операционную систему можно разделить на следующие типы:

- операционная система пакетной обработки ;
- операционная система разделения времени ;
- операционная система реального времени ;
- операционная система диалоговая.

1. ОПЕРАЦИОННАЯ СИСТЕМА ПАКЕТНОЙ ОБРАБОТКИ - это система, которая обрабатывает пакет заданий, т. е. несколько заданий, подготовленной одним или больше пользователями. Пакет заданий поступает в ЭВМ и взаимодействие между пользователем и его заданием во время вычислительного процесса невозможно. Данная операционная система может функционировать однопрограммном и мультипрограммном режимах.

2. ОПЕРАЦИОННАЯ СИСТЕМА РАЗДЕЛЕНИЯ ВРЕМЕНИ - обеспечивает одновременное обслуживание многих пользователей, позволяет любому пользователем взаимодействовать со своим заданием. Эффект одновременной работы достигается разделением процессорного времени и других ресурсов между несколькими вычислительными процессами, которые заданны разными пользователями. Операционная система выстраивает очередь из поступающих заданий, выделяет квант времени для доступа к центральному процессору каждому заданию согласно очереди. Выполнив первое задание, операционная система 1 отсылает его в конец очереди и переходит ко второму и т. д.

3. ОПЕРАЦИОННАЯ СИСТЕМА РЕАЛЬНОГО ВРЕМЕНИ - это система, которая гарантирует оперативное выполнение запросов в течении заданного интервала времени. При этом скорость вычислительных процессов в ЭВМ должна согласоваться со скоростью временных процессов, т.е. и ходом реального времени. ЭВМ с данной операционной системой чаще всего работает в однозначном режиме.

4.ДИАЛОГОВЫЕ ОПЕРАЦИОННЫЕ СИСТЕМЫ - предназначены для индивидуального пользования и обеспечивают удобную форму диалога ЭВМ с пользователем через дисплей при вводе и выполнении команд.

Функционирует операционная система обычно в однопрограммном режиме.

Независимо от типа операционная система чаще всего состоит из относительно компактного ядра - монитора (супервизора) и и набора системных программ и данных. Состав операционной системы предоставлен на рис.3.

ДРАЙВЕР - программа, управляющая физической работой внешнего - периферийного устройства.

УТИЛИТА - программа, предназначена для подготовке исходных информации и организации хранение и использование программ - СЕРВИСНАЯ ПРОГРАММА.

БИБЛИОТЕКА ПРОГРАММ - набор файлов, связанных одним каталогом, в который могут входить объектные модули (программы), макроопределения языка программирования и др.

-------------------------¬
¦ ОПЕРАЦИОННАЯ СИСТЕМА ¦
L-T-------------------T--

¦ ¦
--+-------¬ ----+---------------------------¬
¦ МОНИТОР ¦ ¦ СИСТЕМНЫЕ ПРОГРАММЫ И ДАННЫЕ ¦
L---------- LT-----------T----------------T-

¦ ¦ ¦
-------+---¬ -----+----¬ ---------+------------¬
¦ ДРАЙВЕРЫ ¦ ¦ УТИЛИТЫ ¦ ¦ БИБЛИОТЕКИ ПРОГРАММ ¦
L----------- L---------- L---------------------

Рис. 3


2.


Поколения ЭВМ

1948 — 1958 гг., первое поколение ЭВМ
1959 — 1967 гг., второе поколение ЭВМ
1968 — 1973 гг., третье поколение ЭВМ
1974 — 1982 гг., четвертое поколение ЭВМ

Первое поколение ЭВМ (1948 — 1958 гг.)

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.

Второе поколение ЭВМ (1959 — 1967 гг.)

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

 ЭВМ М-40, -50 для систем противоракетной обороны;

 Урал -11, -14, -16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;

 Минск -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;

 Минск-22 предназначена для решения научно-технических и планово-экономических задач;

 БЭСМ-3 -4, -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;

 М-20, -220, -222 машина общего назначения, ориентированная на решение сложных математических задач;

 МИР-1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач,

 "Наири" машина общего назначения, предназначеная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;

 Рута-110 мини ЭВМ общего назначения;

и ряд других ЭВМ.

ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память—соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый).

Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.

Была достигнута уже величина времени доступа 1х10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами.

Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.

Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.

Третье поколение ЭВМ (1968 — 1973 гг.)

Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились. В СССР в 70-е годы получают дальнейшее развитие АСУ. Закладываются основы государственной и межгосударственной, охватывающей страны - члены СЭВ (Совет Экономической Взаимопомощи) системы обработки данных. Разрабатываются универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. - США). В разработке машин ЕС ЭВМ принимают участие специалисты СССР, Народной Республики Болгария (НРБ), Венгерской Народной Республики (ВНР), Польской Народной Республики (ПНР), Чехословацкой Советской Социалистической Республики (ЧССР) и Германской Демократической Республики (ГДР). В то же время в СССР создаются многопроцессорные и квазианалоговые ЭВМ, выпускаются мини-ЭВМ "Мир-31", "Мир-32", "Наири-34". Для управления технологическими процессами создаются ЭВМ сериии АСВТ М-6000 и М-7000 (разработчики В.П.Рязанов и др.). Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, "Электроника -79, -100, -125, -200", "Электроника ДЗ-28", "Электроника НЦ-60" и др.

К машинам третьего поколения относились "Днепр-2", ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и несколько их промежуточных модификаций - ЕС-1021 и др.), МИР-2, "Наири-2" и ряд других.

Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. Обычные электрические соединения с помощью проводов при этом встраивались в микросхему. Это позволило получить значение времени доступа до 2х10 -9 с. В этот период на рынке появились удобные для пользователя рабочие станции, которые за счет объединения в сеть значительно упростили возможность получения малого времени доступа, обычно присущего большим машинам. Дальнейший прогресс в развитии вычислительной техники был связан с разработкой полупроводниковой памяти, жидкокристаллических экранов и электронной памяти. В конце этого периода произошел коммерческий прорыв в области микроэлектронной технологии.

Возросшая производительность вычислительных машин и только появившиеся многомашинные системы дали принципиальную возможность реализации таких новых задач, которые были достаточно сложны и часто приводили к неразрешимым проблемам при их программной реализации. Начали говорить о "кризисе программного обеспечения". Тогда появились эффективные методы разработки программного обеспечения. Создание новых программных продуктов теперь все чаще основывалось на методах планирования и специальных методах программирования.

Этот период связан с бурным развитием вычислительных машин реального времени. Появилась тенденция, в соответствии с которой в задачах управления наряду с большими вычислительными машинами находится место и для использования малых машин. Так, оказалось, что миниЭВМ исключительно хорошо справляется с функциями управления сложными промышленными установками, где большая вычислительная машина часто отказывает. Сложные системы управления разбиваются при этом на подсистемы, в каждой из которых используется своя миниЭВМ. На большую вычислительную машину реального времени возлагаются задачи планирования (наблюдения) в иерархической системе с целью координации управления подсистемами и обработки центральных данных об объекте.

Программное обеспечение для малых вычислительных машин вначале было совсем элементарным, однако уже к 1968 г. появились первые коммерческие операционные системы реального времени, специально разработанные для них языки программирования высокого уровня и кросс-системы. Все это обеспечило доступность малых машин для широкого круга приложений. Сегодня едва ли можно найти такую отрасль промышленности, в которой бы эти машины в той или иной форме успешно не применялись. Их функции на производстве очень многообразны; так, можно указать простые системы сбора данных, автоматизированные испытательные стенды, системы управления процессами. Следует подчеркнуть, что управляющая вычислительная машина теперь все чаще вторгается в область коммерческой обработки данных, где применяется для решения коммерческих задач.

МиниЭВМ начали применяться и для решения инженерных задач, связанных с проектированием. Проведены первые эксперименты, показавшие эффективность использования вычислительных машин в качестве средств проектирования.

Применение распределенных вычислительных систем явилось базой для децентрализации решения задач, связанных с обработкой данных на заводах, в банках и других учреждениях. Вместе с тем для данного периода характерным является хронический дефицит кадров, подготовленных в области электронных вычислительных машин. Это особенно касается задач, связанных с проектированием распределенных вычислительных систем и систем реального времени.

Четвертое поколение ЭВМ (1974 — 1982 гг.)

Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора)—набора программ, которые организуют непрерывную работу машины без вмешательства человека. К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1025, -1035, -1045, -1055, -1065 (“Ряд 2”), -1036, -1046, -1066, СМ-1420, -1600, -1700, все персональные ЭВМ (“Электроника МС 0501”, “Электроника-85”, “Искра-226”, ЕС-1840, -1841, -1842 и др.), а также другие типы и модификации. К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс "Эльбрус". "Эльбрус-1КБ" имел быстродействие до 5,5 млн. операций с плавающей точкой в секунду, а объем оперативной памяти до 64 Мб. У "Эльбрус-2" производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мслов ( слово 72 разряда), максимальная пропускная способность каналов ввода-вывода - 120 Мб/с.

5. Пятое поколение ЭВМ: 1990-настоящее время