Силовые механизмы

Вид материалаДокументы

Содержание


Классификация силовых механизмов станочных приспособлений
3. Клин как средство зажима и самоторможения
Условия самоторможения клина
Подобный материал:
СИЛОВЫЕ МЕХАНИЗМЫ

1. ЗАМЕЧАНИЯ О РАСЧЕТЕ ПОТРЕБНЫХ СИЛ ЗАЖИМА

Определив схему базирования и расположение установочных эле­ментов, намечают схему закрепления деталей. Последняя должна удов­летворять следующим требованиям:
  1. в процессе зажима не должно нарушаться положение детали, за­данное ей при базировании;
  2. силы зажима должны быть достаточными, чтобы исключить воз­можность смещения и вибраций детали в процессе обработки;
  3. силовые механизмы должны быть быстродействующими и легко управляемыми.

При построении схемы закрепления деталей определяют точки при­ложения величины и направления сил зажима исходя из схемы действия и значений сил резания и их моментов. Так, например, при фрезерова­нии деталей, учитывая наличие опрокидывающих моментов, боковые опоры и направленные на них силы зажима располагают как можно ближе к обрабатываемой поверхности. При построении схемы закрепления дета­лей в кондукторе учитывают действие осевой силы резания, крутящего момента и т.д. Линия действия силы зажима должна проходить через рабочую поверхность опоры (рис. 4.I) и перпендикулярно к ней. Со­блюдение этого требования обязательно при закреплении нежестких деталей (планки, плиты, рамы, станины и т. п.).




Рис. 4.1. Точки приложения сил зажима


Величины сил зажима можно определять, решая задачу статики на равновесие твердого тела под действием всех приложенных к нему сил и их моментов (сил резания, зажима, массы, реактивных сил и сил трения).

Значения сил резания и моментов рассчитывают по формулам из курса резания металлов или берут из таблиц нормативов, а затем, для большей надежности, увеличивают их на коэффициент запаса К = 1,5 . . . 2,5; меньшее значение К для случая чистовой обработки, большее - для черновой. На практике силы зажима обычно определяют приближенно, исходя из анализа взаимодействия сил резания и зажима и их мо­ментов.



Рис. 4.2. Схемы взаимодействия сил резания и зажима


Рассмотрим пять характерных случаев такого взаимодействия.
  1. Силы зажима W и резания Р имеют одинаковое направление и действуют на опору (рис. 4.2, а). В этом случае сила зажима мини­мальна (Wmin).
  2. Силы имеют противоположное направление (рис. 4.2, б). Тогда

W = КР.



Рис. 4.З. Схемы для расчета сил зажима при обработке в патронах и на оправке


3. Силы направлены взаимно перпендикулярно, и силе резания про­тиводействуют силы трения на опоре и в точке зажима (рис. 4.2, в). В этом случае





где f1, f2 — коэффициенты трения.

При f1 = f2 = 0,1



4. Заготовка, обрабатываемая в трехкулачковом патроне, находится под воздействием момента Мрез и осевой составляющей силы резания Рх. Из схемы, приведенной на рис. 4.3, а, находим



отсюда

,

где Мрез – момент силы резания, Wсум - суммарная сила зажима всеми кулачками; W — сила зажима одним кулачком; z — число кулачков, R — радиус заготовки; К — коэффициент запаса; f — коэффициент трения.

Найденное значение Wсум проверяется на невозможность осевого сдвига заготовки



Отсюда



При расчетах средние значения коэффициента трения можно принимать равными:

1) при контакте обработанных поверхностей с опорными пластинами f = 0,1 … 0,15;

2) при контакте необработанных поверхностей с установочными штырями со сферической головкой f = 0,2 …0,3;

3) при контакте с закаленными рифлеными элементами (рифленые опоры, губки кулачков и т. п.) f < 0,7 в зависимости от рисунка и глубины насечки.

Силы зажима в каждой точке следует определять с возможно большей точностью, так как чрезмерное их завышение приводит к неоправданному увеличению габаритов и массы приспособлений, диаметров цилиндров, излишнему расходу сжатого воздуха, к увеличению деформации закрепляемых деталей.

Действительные силы зажима, развиваемые силовыми механизмами, должны быть равны или несколько больше расчетных. Значение этих сил зависит от величины исходной силы Q и передаточного отношения сил выбранного механизма.


Классификация силовых механизмов станочных приспособлений

Силовые механизмы приспособлений делятся на простые и комбинированные, т.е. состоящие из двух-трех сблокированных простых механизмов (см. схему).

К простым механизмам относятся клиновые, винтовые, эксцентриковые, рычажные, рычажно-шарнирные и др. Простые механизмы принято называть зажимами.

Комбинированные механизмы обычно выполняются как винто-рычажные, эксцентрико-рычажиые и т, п.

В тех случаях, когда простые или комбинированные механизмы используются в компоновках с механизированными приводами (пневматическими и др.), их называют механизмами-усилителями. По числу ведомых звеньев механизмы делятся на однозвенные, двухзвенные и многозвенные (многоточечные).

Каждый силовой механизм имеет ведущее звено, к которому прикладывается исходная сила, и одно или несколько ведомых звеньев (прижимных планок, плунжеров, кулачков), передающих обрабатываемой детали силы зажима. Многозвенные механизмы зажимают одну деталь в нескольких точках или несколько деталей в многоместном приспособлении одновременно и с равными силами.

Особую группу многозвенных механизмов составляют самоцентрирующие патроны и оправки.

По степени механизации силовые механизмы классифицируются на ручные, механизированные и автоматизированные.

Ручные механизмы требуют применения значительной мускульной энергии и утомляют рабочего. Механизированные работают от энергии, передаваемой приводом. Автоматизированные приводятся в действие перемещающимися столами, суппортами, шпинделями станков или центро­бежными силами вращающихся масс и осуществляют зажим и раскрепление изделий без участия рабочего.




Рис. 4.4 Классификация силовых приводов

3. КЛИН КАК СРЕДСТВО ЗАЖИМА И САМОТОРМОЖЕНИЯ

Большинство силовых механизмов основано на действии клина, обла­дающего свойством самоторможения.

Разновидности клина

Клин применяется в следующих конструктивных вариантах:
  1. плоский односкосый (рис. II.4);
  2. двускосый (рис. II.5, а) или круглый (рис. II.5, б);
  3. криволинейный клин в форме эксцентрика или плоского кулачка (рис. II.б). В этих конструкциях основание односкосого клина как бы навернуто на окружность диска, а наклонная его плоскость превращена в криволинейную поверхность;
  4. винтовой клин в форме торцового кулачка (рис. II.7). Здесь односкосый клин как бы свернут в цилиндр; основание клина образует опору, а его наклонная плоскость — винтовой профиль кулачка (винт и гайка также работают па принципу торцового кулачка с трением по одной стороне резьбового профиля).



В самоцентрирующих клиновых механизмах (патроны, оправки) используются системы из трех и более клиньев. К таким механизмам относятся: цанговые и клиновые (рис. II.8, а и б), клиноплунжерные и шариковые (рис. II.9, а и б) и некоторые другие.


Условия самоторможения клина

В силовых механизмах клин может работать с трением на двух поверхностях (наклонной поверхности и основании клина) или с трением только на наклонной поверхности. Последний случай обычно встречается в само­центрирующих клиновых механизмах. Так, например, если цанговый механизм снабжен упором 3 (рис. II.10, а), ограничивающим перемещение заготовки 2 (пруток), то каждый лепесток 1 цанги (клин) при зажиме преодолевает трение на двух поверхностях. Если механизм без упора, трение возникает только на конической поверхности, так как пруток в этом случае перемещается вместе с цангой и .




Рис. 4.5. Клиновые механизмы: а — с трением на обеих поверхностях

клиньев; б — с трением только на наклонной поверхности.


В клиновой оправке (см. рис. II.8, б) заготовка устанавливается до упора и каждый клин при зажиме имеет трение на двух поверхностях. Но если заготов­ка 2 не прилегает к упору (рис. II. 10, б), то клинья 1 преодолевают трение толь­ко на наклонной поверхности ().







Для выяснения условий самоторможе­ния рассмотрим рис. 11.11 и 11.12. Из механики известно, что если тело 1 (рис. 11.11), нагруженное нормальной реакцией N под действием силы Q равномерно перемещается на плоско­сти 2, то при наличии силы трения F полная реакция R отклоняется от направления нормали навстречу движению на некоторый угол , называемый углом трения.

Из рисунка находим



Так как коэффициент трения скольжения , то

.

На рис. II.12, а показана схема сил, действующих на зажатый односкосый клин с трением на двух поверхностях. При любом угле скоса зажатый клин стремится вытолкнуть сила обратного действия представляющая собой горизонтальную составляющую нормальной реакции N; W — ее вертикальная составляющая

Силе противодействуют сила трения на основании клина и горизонтальная составляющая силы трения на наклонной поверх­ности клина.

Условие равновесия клина



Из схемы сила трения



Ее горизонтальная составляющая



Вертикальная составляющая силу трения , равная , сумми­руется с вертикальной составляющей W нормальной силы N. Соответ­ственно величина нормальной реакции на основании клина



Формула (2) для предельного случая перехода самотормозящего клина в несамотормозящий приобретает вид





Рис. 11.12. Схема для выяснения условия самоторможения и запаса само­торможения

клина (а); схема для определения выталкивающей силы (б)


Подставив в эту формулу значения сил, получим



или



При малых углах а произведение близко к нулю, а величина тангенсов углов близка к величине соответствующих углов в радианах.

Тогда условие предельного равновесия клина выразится равенством



Полагая углы трения на обеих поверхностях клина одинаковыми, т. е. , получим



Для клина с трением только на наклонной поверхности () усло­вие равновесия будет



Очевидно, что в заторможенном состоянии клин будет находиться, если угол его скоса а меньше или .

Условия

(4)

или

(4а)

называются условиями самоторможения клина с тре­нием на двух поверхностях (4) и одной поверхности (4а).

Клин и сопряженные с ним детали обычно выполняются из стали, с чисто обработанными (шлифованными) поверхностями. Для этих по­верхностей, в зависимости от условий работы клина, принимают



или



Тогда условия самоторможения соответственно будут:

для клина с трением на двух поверхностях





для клина с трением только на наклонной поверхности





Для надежности заклинивания углы при расчетах берут меньше предельных, исходя из потребного запаса самоторможения (см. ниже).

Выталкивающая сила (рис. II.12, б), необходимая для расклини­вания самотормозящего клина, определяется из следующих рассуждений.

Заменим силы N и F равнодействующей R и разложим ее на силы и F". На основании клина действуют нормальная сила реакции и сила трения .

Из условия равновесия клина находим:



Так как из схемы



то

(5)

или при

(6)

Для клина с трением только по наклонной поверхности

(7)

Сила в формулах (6) и (7) подсчитывается по формуле (3). Для упрощения расчетов можно принимать .


  1. В какой из приведенных схем потребные силы зажима минимальны и максимальны?



Рис. 4.2. Схемы взаимодействия сил резания и зажима

  1. Приведите пример механизированных силовых механизмов.



  1. Сформулируйте условие самоторможения клина.