Джеймс трефил
Вид материала | Закон |
- Джеймс А. Дискретная математика и комбинаторика [Текст] / Джеймс А. Андерсон, 42.79kb.
- Джеймс блиш города в полете 1-4 триумф времени вернись домой, землянин жизнь ради звезд, 10495.38kb.
- Джеймс Н. Фрей. Как написать гениальный роман, 2872.12kb.
- Мюриел Джеймс, Дороти Джонгвард, 4810.7kb.
- Кен Арнольд Джеймс Гослинг, 5058.04kb.
- Джеймс Джодж Бойл. Секты-убийцы (Главы из книги) Перевод с английского Н. Усовой, 844.92kb.
- Джеймс Хэрриот, 3697.74kb.
- В. К. Мершавки Доктор Джеймс Холлис известный юнгианский аналитик, директор Центра, 1972.4kb.
- В. К. Мершавки Доктор Джеймс Холлис известный юнгианский аналитик, директор Центра, 5237.48kb.
- Джеймс Боллард, 2244.23kb.
АНТУАН ЛОРАН ЛАВУАЗЬЕ (Antoine-Laurent Lavoisier, 1743-94) — французский химик. Родился в Париже; получил всестороннее научное образование в Коллеже Мазарини (Collège Mazarin). Вложив средства в компанию по сбору налогов, он смог материально обеспечить создание лаборатории, в которой он заложил фундамент законов современной химии. Ввел в научную практику строгие методы проведения экспериментов, такие как тщательное взвешивание реагентов и продуктов реакции. Лавуазье не только опроверг теорию флогистона (хотя свет и тепло — «калории» — он продолжал считать химическими элементами), но также открыл состав
воды и установил, что органические вещества содержат углерод, водород и (во многих случаях) кислород. (См. также кислоты и основания.) Во время Французской революции Жан-Поль Марат (Jean-Paul Marat, 1743-93), человек крайних взглядов, обвинил его в том, что он создал препятствие для естественной циркуляции воздуха в Париже (Лавуазье руководил возведением городской стены). Как сборщик налогов Лавуазье был объявлен противником революции и закончил свой жизненный путь на гильотине. Его вдова вышла замуж за графа Рамфорда (Rumford), известного своим участием в обосновании меха -
НИЧЕСКОЙ ТЕОРИИ ТЕПЛОТЫ.
Формула Дрейка
Число внеземных цивилизаций, желающих вступить в контакт с нашей, предсказуемо
1961
xvi • принцип коперника 1950 • парадокс ферми 1961 • ФОРМУЛА ДРЕЙКА
антропный
принцип
Вообще-то говоря, не многие крупные научные открытия датированы строго — не только годом, но и месяцем, и числом. Однако как минимум одно из них можно датировать с точностью буквально до минут. В ночь с 1 на 2 ноября 1961 года несколько ученых — участников конференции, проходившей в Грин-Бэнке (Green Bank), штат Виржиния, США, засиделись в баре допоздна за обсуждением статьи, написанной физиками Филипом Моррисоном (Philip Morrison, р. 1915) и Джузеппе Коккони (Giuseppe Cocconi, р. 1914). Они спорили, могут ли земные ученые, едва начавшие строить серьезные по размерам радиотелескопы, реально обнаружить радиосигналы, посылаемые внеземными цивилизациями из далекого космоса. Если где-то в глубинах Вселенной действительно есть хоть одна внеземная цивилизация, стремящаяся к контакту с нами, она, вероятно, посылает нам радиосигналы, и нам лишь нужно их поймать, рассуждали они. Заодно была сформулирована задача на следующий день конференции: оценить вероятное число внеземных цивилизаций, готовых вступить в контакт с нами.
Вопрос был поставлен, и ответ на него уже на следующий день предложил американский радиоастроном Фрэнк Дрейк. Согласно его формуле, число внеземных цивилизаций N составляет:
N = RPN LCT,
где R — число ежегодно образующихся звезд во Вселенной; Р — вероятность наличия у звезды планетной системы; N — вероятность того, что среди планет имеется планета земного типа, на которой возможно зарождение жизни; L — вероятность реального зарождения жизни на планете; С — вероятность того, что разумная жизнь пошла по техногенному пути развития, разработала средства связи и желает вступить в контакт, и, наконец, T — усредненное время, на протяжении которого желающая вступить в контакт цивилизация посылает радиосигналы в космос, чтобы связаться с нами. Смысл формулы Дрейка состоит, если хотите, не в том, чтобы все окончательно запутать, а в том, чтобы наглядно показать всю степень человеческого неведения относительно реального положения дел во Вселенной и хотя бы приблизительно раздробить одну чисто гадательную оценку общего числа цивилизаций в ней на несколько вероятностных оценок. По крайней мере, в таком виде все начинает выглядеть менее загадочно.
На момент конференции в Грин-Бэнке единственным более или менее известным числом в правой части формулы было число ежегодно образующихся звезд R. Что касается других чисел, то к планетам земного типа (N ) даже в нашей Солнечной системе можно было отнести от одного (только Земля) до пяти (Венера, Земля, Марс и по одному из крупных спутников Юпитера и Сатурна) космических объектов планетарного типа. При оптимистичных прогнозах подобного рода получалось, что Галактика буквально кишит миллионами технологически развитых цивилизаций (N), а мы, по сути, юниоры в этой «галактической лиге». Эти сведения
незамедлительно заполонили средства массовой информации, а через них — и массовое сознание, и люди попросту перестали сомневаться, что существование внеземного разума есть непреложная истина.
Однако с 1961 года прошло уже не одно десятилетие, и чем дальше, тем больше мы убеждаемся в том, что нужно умерить оптимизм, изначально порожденной формулой Дрейка в массовом сознании землян, истосковавшихся по братьям по разуму. Сегодня мы знаем, например, в отличие от излишне оптимистичных участников грин-бэнкской группы, что существование жизни в пределах нашей Солнечной системы вне Земли крайне маловероятно (разве что она существует под толстым ледяным щитом в океане четвертого по величине спутника Сатурна, который по странной иронии называется Европа). И, хотя после 1961 года нами было открыто немало планетных систем вокруг ранее известных звезд, все они выглядят мало похожими на нашу Солнечную систему, поскольку планеты там по большей части обращаются по вытянутым эллиптическим орбитам с весьма значительным эксцентриситетом, а значит, годовой перепад температур на них выглядит неприемлемым с точки зрения развития белковой жизни. Фактически выяснилось, что условия, способствующие удержанию воды на поверхности планетарного тела в течение миллиардов лет без ее испарения и/или вымораживания, настолько жестки, что, кроме Земли, таких планет до сих пор не найдено — и это неудивительно, поскольку даже несколько процентов изменения радиуса земной орбиты приведут к тому, что наша планета станет непригодной для жизни.
Так случилось, что в 1981 году я и мой коллега-астроном Роберт Руд (Robert Rood, р. 1942) наткнулись на формулу Дрейка и решили ее критически переосмыслить в свете современных научных знаний. Подставив все имеющиеся у нас на руках оценки величин в правой части формулы, мы получили значение N, приблизительно равное 0,003. То есть три из тысячи (или примерно одна из трехсот) звездных систем имеют в своем составе технологически развитую, желающую общаться с нами цивилизацию. Или, если хотите, это означает, что межзвездные сигналы со стороны внеземного разума появились в нашей Галактике лишь в последнюю 1/300 часть срока ее существования. В любом случае ставки на предмет их обнаружения у нас крайне плохи: 1:300. Естественно, за прошедшие двадцать с лишним лет ничего не изменилось и никаких признаков жизни внеземные цивилизации не подали. Их поиск продолжается уже не первое десятилетие, финансируется и за государственный счет, и частными фондами. Увы... Мы и поныне не нашли себе пресловутых внеземных братьев по разуму, не говоря уже о том, чтобы попытаться вступить с ними в контакт. Да и ладно. Зато у нас накопилась масса абсолютно достоверных данных относительно того, чего там нет.
ФРЭНК ДОНАЛЬД ДРЕЙК (Frank Donald Drake, р. 1930) — американский астроном. Родился в Чикаго, учился на факультете электроники Корнельского университета. Прослушав курс лекций прославленного астронома Отто Струве (1897-1963) о формировании планетных систем, на всю жизнь загорелся интересом к вопросам внеземной жизни и цивилизации. Отслужив в американских ВМС, последовательно работал в
Национальной радиоастрономической обсерватории (ИКАО), Корнельском университете и Калифорнийском университете (г. Санта-Крус). При поддержке Струве Дрейк организовал строительство 28-метрового радиотелескопа на базе ИКАО (проект «Озма») — первого в мире измерительно-регистрирующего прибора, специально созданного для попытки выявить внеземную жизнь (см. пара -докс ферми).
XIX-XX
ок. 1895
Фотосинтез
•
1624
Растения превращают солнечный свет в запасенную химическую энергию в два этапа: сначала они улавливают энергию солнечного света, а затем используют ее для связывания углерода с образованием органических молекул
1779, 1905
ЭКСПЕРИМЕНТ ВАН ГЕЛЬМОНТА
1783
ФОТОСИНТЕЗ
КРУГОВОРОТ УГЛЕРОДА В ПРИРОДЕ
БИОЛОГИЧЕСКИЕ МОЛЕКУЛЫ
1937
ТЕОРИЯ СЦЕПЛЕНИЯ-НАТЯЖЕНИЯ
ГЛИКОЛИЗ И ДЫХАНИЕ
Зеленые растения — биологи называют их автотрофами — основа жизни на планете. С растений начинаются практически все пищевые цепи. Они превращают энергию, падающую на них в форме солнечного света, в энергию, запасенную в углеводах (см. биологические молекулы), из которых важнее всего шести-углеродный сахар глюкоза. Этот процесс преобразования энергии называется фотосинтезом. Другие живые организмы получают доступ к этой энергии, поедая растения. Так создается пищевая цепь, поддерживающая планетарную экосистему.
Кроме того, воздух, которым мы дышим, благодаря фотосинтезу насыщается кислородом. Суммарное уравнение фотосинтеза выглядит так:
вода + углекислый газ + свет — углеводы + кислород.
Растения поглощают углекислый газ, образовавшийся при дыхании, и выделяют кислород — продукт жизнедеятельности растений (см. гликолиз и дыхание). К тому же фотосинтез играет важнейшую роль в круговороте углерода в природе.
Кажется удивительным, что при всей важности фотосинтеза ученые так долго не приступали к его изучению. После эксперимента ван гельмонта, поставленного в XVII веке, наступило затишье, и лишь в 1905 году английский физиолог растений Фредерик Блэкман (Frederick Blackman, 1866-1947) провел исследования и установил основные процессы фотосинтеза. Он показал, что фотосинтез начинается при слабом освещении, что скорость фотосинтеза возрастает с увеличением светового потока, но начиная с определенного уровня дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза. Блэкман показал, что повышение температуры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и освещения скорость фотосинтеза возрастает значительно больше, чем при одном лишь усилении освещения.
На основании этих экспериментов Блэкман заключил, что происходят два процесса: один из них в значительной степени зависит от уровня освещения, но не от температуры, тогда как второй сильно определяется температурой независимо от уровня света. Это озарение легло в основу современных представлений о фотосинтезе. Два процесса иногда называют «световой» и «темновой» реакцией, что не вполне корректно, поскольку оказалось, что, хотя реакции «темновой» фазы идут и в отсутствии света, для них необходимы продукты «световой» фазы.
Фотосинтез начинается с того, что излучаемые солнцем фотоны попадают в особые пигментные молекулы, находящиеся в листе, — молекулы хлорофилла. Хлорофилл содержится в клетках листа, в мембранах клеточных органелл хлоропластов (именно они придают листу зеленую окраску). Процесс улавливания энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул — эти кластеры принято называть Фотосисте-
Гипотеза Ван Ниля
Процесс фотосинтеза описывается следующей химической реакцией:
СО2 + Н2О +
свет — углевод + О2
В начале XX века считалось, что кислород, выделяющийся в процессе фотосинтеза, образуется в результате расщепления углекислого газа. Эту точку зрения опроверг в 1930-е годы Корнелис Бернардус Ван Ниль (Van Niel, 1897-1986), в то время аспирант Стэн-фордского университета в штате Калифорния. Он занимался изучением пурпурной серобактерии (на фото), которая нуждается для осуществления фотосинтеза в сероводороде (H2S) и выделяет в качестве побочного продукта жизнедеятельности атомарную серу. Для таких бактерий уравнение фотосинтеза выглядит следующим образом:
СО2 + H2S +
свет — углевод + 2S
Исходя из сходства этих двух процессов, Ван Ниль предположил, что при обычном фотосинтезе источником кислорода является не углекислый газ, а вода, поскольку у серобактерий, в метаболизме которых вместо кислорода участвует сера, фотосинтез возвращает эту серу, являющуюся побочным продуктом реакций фотосинтеза. Современное подробное объяснение фотосинтеза подтверждает эту догадку: первой стадией процесса фотосинтеза (осуществляемой в Фотосистеме II) является расщепление молекулы воды.
мой I и Фотосистемой II. Номера кластеров отражают порядок, в котором эти процессы были открыты, и это одна из забавных научных странностей, поскольку в листе сначала происходят реакции в Фотосистеме II, и лишь затем — в Фотосистеме I.
Когда фотон сталкивается с 250400 молекулами Фотосистемы II, энергия скачкообразно возрастает и передается на молекулу хлорофилла. В этот момент происходят две химические реакции: молекула хлорофилла теряет два электрона (которые принимает другая молекула, называемая акцептором электронов) и расщепляется молекула воды. Электроны двух атомов водорода, входивших в молекулу воды, возмещают два потерянных хлорофиллом электрона.
После этого высокоэнергетический («быстрый») электрон перекидывают друг другу, как горячую картофелину, собранные в цепочку молекулярные переносчики. При этом часть энергии идет на образование молекулы аденозинтрифосфата (АТФ), одного из основных переносчиков энергии в клетке (см. биологические молекулы). Тем временем немного другая молекула хлорофилла Фотосистемы I поглощает энергию фотона и отдает электрон другой молекуле-акцептору. Этот электрон замещается в хлорофилле электроном, прибывшим по цепи переносчиков из Фотосистемы II. Энергия электрона из Фотосистемы I и ионы водорода, образовавшиеся ранее при расщеплении молекулы воды, идут на образование НАДФ-Н, другой молекулы-переносчика.
В результате процесса улавливания света энергия двух фотонов запасается в молекулах, используемых клеткой для осуществления реакций, и дополнительно образуется одна молекула кислорода. (Отмечу, что в результате еще одного, значительно менее эффективного процесса с участием одной лишь Фотосистемы I, также образуются молекулы АТФ.) После того как солнечная энергия поглощена и запасена, наступает очередь образования углеводов. Основной механизм синтеза углеводов в растениях был открыт Мелвином Калвином, проделавшим в 1940-е годы серию экспериментов, ставших уже классическими. Калвин и его сотрудники выращивали водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Им удалось установить химические реакции темновой фазы, прерывая фотосинтез на разных стадиях.
Цикл превращения солнечной энергии в углеводы — так называемый цикл Калвина — сходен с циклом Кребса (см. гликолиз и дыхание): он тоже состоит из серии химических реакций, которые начинаются с соединения входящей молекулы с моле-кулой-«помощником» с последующей инициацией других химических реакций. Эти реакции приводят к образованию конечного продукта и одновременно воспроизводят молекулу-«помощника», и цикл начинается вновь. В цикле Калвина роль такой молекулы-«помощника» выполняет пятиуглеродный сахар рибулозодифосфат (РДФ). Цикл Калвина начинается с того, что молекулы углекислого
газа соединяются с РДФ. За счет энергии солнечного света, запасенной в форме АТФ и НАДФ-Н, сначала происходят химические реакции связывания углерода с образованием углеводов, а затем — реакции воссоздания рибулозодифосфата. На шести витках цикла шесть атомов углерода включаются в молекулы предшественников глюкозы и других углеводов. Этот цикл химических реакций будет продолжаться до тех пор, пока поступает энергия. Благодаря этому циклу энергия солнечного света становится доступной живым организмам.
В большинстве растений осуществляется описанный выше цикл Калвина, в котором углекислый газ, непосредственно участвуя в реакциях, связывается с рибулозодифосфатом. Эти растения называются С3-растениями, поскольку комплекс «углекислый газ—рибулозодифосфат» расщепляется на две молекулы меньшего размера, каждая из которых состоит из трех атомов углерода. У некоторых растений (например, у кукурузы и сахарного тростника, а также у многих тропических трав, включая ползучий сорняк) цикл осуществляется по-другому. Дело в том, что углекислый газ в норме проникает через отверстия в поверхности листа, называемые устьицами. При высоких температурах устьица закрываются, защищая растение от чрезмерной потери влаги. В С3-растения при закрытых устьицах прекращается и поступление углекислого газа, что приводит к замедлению фотосинтеза и изменению фотосинтетических реакций. В случае же кукурузы углекислый газ присоединяется к трехуглеродной молекуле на поверхности листа, затем переносится во внутренние участки листа, где углекислый газ высвобождается и начинается цикл Калвина. Благодаря этому довольно сложному процессу фотосинтез у кукурузы осуществляется даже в очень жаркую, сухую погоду. Растения, в которых происходит такой процесс, мы называем С4-рас-тениями, поскольку углекислый газ в начале цикла транспортируется в составе четырехуглеродной молекулы. С3-растения — это в основном растения умеренного климата, а С4-растения в основном произрастают в тропиках.
МЕЛБИН КАЛВИН (Melvin Calvin, 1911-97) — американский биолог. Родился в г. Сент-Пол, штат Миннесота, в семье выходцев из России. В 1931 году получил степень бакалавра в области химии в Мичиганском колледже горного дела и технологии, а в 1935 году — степень доктора химии в университете штата Миннесота. Двумя годами позже Калвин начал работать в Калифорнийском университете в Беркли и в
1948 году стал профессором; за год до этого был назначен директором отдела биоорганики в Радиационной лаборатории Лоренса в Беркли, где использовал технологические достижения военных исследований времен Второй мировой войны, например новые методы хроматографии, для изучения темновой фазы фотосинтеза. В 1961 году Калвин был удостоен Нобелевской премии в области химии.
ок. 420 до н.э.
Фотоэлектрический эффект
Под воздействием фотонов металл может испускать электроны строго определенных энергий
•
•
1899
АТОМНАЯ ТЕОРИЯ ОТРОЕНИЯ ВЕЩЕСТВА
1900
ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ
1913
ПОСТОЯННАЯ ПЛАНКА
1925
АТОМ БОРА
1926
КВАНТОВАЯ МЕХАНИКА
ПОЛОСНАЯ ТЕОРИЯ
ТВЕРДОТЕЛЬНОЙ
ПРОВОДИМОСТИ
Выбивание светом электронов с поверхности токопроводящих материалов — явление, широко используемое сегодня в повседневной жизни. Например, некоторые системы сигнализации работают за счет передачи видимых или инфракрасных световых лучей на фотоэлектрический элемент, из которого выбиваются электроны, обеспечивающие электропроводность цепи, в которую он включен. Если на пути светового луча появляется препятствие, свет на датчик поступать перестает, поток электронов прекращается, цепь разрывается — и срабатывает электронная сигнализация.
Это явление, получившее название фотоэлектрического эффекта, или кратко фотоэффекта, было открыто в конце XIX столетия и сразу поставило целый ряд фундаментальных вопросов, поскольку ничего из того, что было известно ученым о строении металлов или природе света, фотоэффекта не объясняло. Нельзя сказать, что классическая теория запрещала бы свету выбивать электроны из металла. Электромагнитные волны по идее могли «вымывать» электроны из металла подобно тому, как морские волны выносят на поверхность и постепенно прибивают к берегу легкие пробковые крошки. Однако проблема состояла в том, что столь простым объяснением в случае фотоэффекта ограничиться было невозможно. Во-первых, электроны появлялись практически мгновенно после начала облучения. Во-вторых, фотоэффект, как оказалось, возникал даже под воздействием самых слабых световых лучей, причем по мере повышения интенсивности облучения энергия высвобождаемых электронов не изменялась. И то и другое вступало в явное противоречие с классической картиной взаимодействия света с электронами.
Проблему в конце концов удалось решить в начале ХХ века Альберту Эйнштейну, причем сделанные им выводы дали мощный толчок развитию квантовой механики. Незадолго до этого Макс Планк показал, что излучение черного тела можно адекватно описать, приняв за допущение, что атомы излучают и поглощают свет фиксированными энергетическими порциями — квантами. Он полагал, что этот феномен каким-то образом обусловлен внутренним строением атомов, но отнюдь не природой света. Однако Эйнштейн воспринял идею Планка гораздо серьезнее и постулировал, что сам свет распространяется дискретными пучками энергии, которые он назвал фотонами. иногда фотоны ведут себя подобно частицам, иногда — подобно волнам (см. принцип дополнительности). В частности, при взаимодействии с электроном фотон может вести себя как частица и буквально выбивать электрон из атома (это соударение фотона с атомом можно уподобить столкновению двух бильярдных шаров). Причем для выбивания электрона при таком соударении достаточно единственного фотона. Далее, повышение интенсивности света приводит к увеличению числа фотонов (и, следовательно,
числа выбитых электронов), но не энергии отдельно взятого фотона. Следовательно, и энергия, и скорость отдельно взятого выбитого фотоэлектрона не зависят от интенсивности света — но только от его частоты.
Рассуждая таким образом, Эйнштейн вывел следующее простое уравнение для описание энергии фотоэлектронов:
Е = Иу - ф,
где у — частота падающего света, И — постоянная планка, а ф — так называемая «работа выхода», то есть минимальная энергия, необходимая для того, чтобы выбить электрон из атома металла.
Химические связи
Атомы могут присоединяться друг к другу, либо отдавая и принимая электроны, либо делясь парами электронов с соседними атомами, либо делясь электронами со многими другими атомами, либо благодаря эффекту поляризации
1854 • КАТАЛИЗАТОРЫ И ФЕРМЕНТЫ
1887 • КИСЛОТЫ
•
1919
И ОСНОВАНИЯ
ПРАВИЛО ОКТЕТА
1930-е
кон. • ТЕОРИЯ 1920-х МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ