Джеймс трефил

Вид материалаЗакон

Содержание


Эрнст мах
Универсальные теории
Горных пород
Джеймс геттон
Чарлз лайель
Уравнение бернулли
Даниил бернулли
Клапейрона— клаузиуса
R — постоянная ридберга. Температура T
Подобный материал:
1   ...   36   37   38   39   40   41   42   43   ...   50

ЭРНСТ МАХ (Ernst Mach, 1838-1916) — австрийский физик. Родился в Моравии, в Турасе (ныне Туржани, Чехия), образование получил от отца, уделявшего повышенное внимание развитию у сына как теоретических знаний, так и практических навыков. Докторскую степень получил в Венском университете в 1860 году, где начиная с 1895 года и до конца жизни был профессором истории науки. Основное признание

Мах заслужил именно за свои труды в области философии и истории науки, однако немаловажен и его вклад в психологию и физику. Помимо исследования ударных волн ученый сформулировал один из важнейших постулатов теоретической механики, получивший название «принцип Маха» и гласящий, что инерция объекта происходит от его гравитационного взаимодействия с совокупной массой остальной Вселенной.


Универсальные теории

Все силы в природе — это различныепроявления единой объединенной

силы


1948 • большой взрыв


1961 • стандартная модель


1968 • теория струн


xxi (?) • УНИВЕРСАЛЬНЫЕ ТЕОРИИ


В природе действуют четыре фундаментальные силы, и все физические явления происходят в результате взаимодействий между физическими объектами, которые обусловлены одной или несколькими из этих сил. Четыре вида взаимодействий в порядке убывания их силы это:
  • сильное взаимодействие, удерживающее кварки в составе адронов и нуклоны в составе атомного ядра;
  • электромагнитное взаимодействие между электрическими зарядами и магнитами;
  • слабое взаимодействие, которым обусловлены некоторые типы реакций радиоактивного распада;
  • гравитационное взаимодействие.

В классической механике Ньютона любая сила — это всего лишь сила притяжения или отталкивания, вызывающая изменение характера движения физического тела. В современных квантовых теориях, однако, понятие силы (трактуемое теперь как взаимодействие между элементарными частицами) интерпретируется несколько иначе. Силовое взаимодействие теперь считается результатом обмена частицей-носителем взаимодействия между двумя взаимодействующими частицами. При таком подходе электромагнитное взаимодействие между, например, двумя электронами обусловлено обменом фотоном между ними, и аналогичным образом обмен другими частицами-посредниками приводит к возникновению трех прочих видов взаимодействий. (Подробнее см.

стандартная модель.)

Более того, характер взаимодействия обусловлен физическими свойствами частиц-носителей. В частности, закон всемирного тяготения ньютона и закон кулона имеют одинаковую математическую формулировку именно потому, что в обоих случаях переносчиками взаимодействия являются частицы, лишенные массы покоя. Слабые взаимодействия проявляются лишь на исключительно малых расстояниях (по сути, лишь внутри атомного ядра), поскольку их носители — калибровочные бозоны — являются очень тяжелыми частицами. Сильные взаимодействия также проявляются лишь на микроскопических расстояниях, но по иной причине: здесь все дело в «пленении кварков» внутри адронов и

фермионов (см. стандартная модель).

Оптимистичные ярлыки «универсальная теория», «теория всего сущего», «теория великого объединения», «окончательная теория» сегодня используются в отношении любой теории, пытающейся объединить все четыре взаимодействия, рассматривая их в качестве различных проявлений некоей единой и великой силы. Если бы это удалось, картина устройства мира упростилась бы до предела. Вся материя состояла бы лишь из кварков и лептонов (см. стандартная модель), и между всеми этими частицами действовали бы силы единой природы. Уравнения, описывающие базовые взаимодействия между ними, были бы столь короткими и


ясными, что уместились бы на почтовой открытке, описывая при этом, по сути, основу всех без исключения процессов, наблюдаемых во Вселенной. По словам нобелевского лауреата, американского физика-теоретика Стивена Вайнберга (Steven Weinberg, 19331996) «это была бы глубинная теория, от которой во все стороны стрелами расходилась интерференционная картина устройства мироздания, и более глубоких теоретических основ в дальнейшем не потребовалось бы». Как видно из сплошных сослагательных наклонений в цитате, такой теории до сих пор не существует. Нам остается лишь очертить примерные контуры процесса, который может привести к разработке столь всеобъемлющей теории.

Путь от четырех взаимодействий к одному весьма справедливо называют объединением. Чтобы понять, как оно происходит, представьте себе две пары фигуристов на открытом катке при температуре воздуха несколько ниже 0°С (точка замерзания воды). Одна пара обменивается ведром этилового спирта, который при такой температуре не замерзает и находится в жидком состоянии, а вторая — ведром превратившейся в лед воды. Может показаться, что между ними действуют две силы разной природы — одна передается путем обмена жидкостью, другая — путем обмена твердым телом. Но стоит температуре подняться выше нуля, как вода во втором ведре растает и мы увидим, что на самом деле между фигуристами действовала одна и та же сила, ставшая следствием обмена жидкостью. Нам только казалось, что это были две разные силы.

Аналогичным образом все теории объединения исходят из того, что при достаточно высоких энергиях взаимодействия между частицами (когда они имеют скорость, близкую к предельной скорости света) «лед тает», грань между различными видами взаимодействий стирается, и все силы начинают действовать одинаково. При этом теории предсказывают, что происходит это не одновременно для всех четырех сил, а поэтапно, по мере увеличения энергий взаимодействия.

Самый нижний энергетический порог, при котором может произойти первое слияние сил разных типов, крайне высок, однако находится уже в пределах досягаемости самых современных ускорителей. Энергии частиц на ранней стадии большого взрыва были крайне высоки (см. также ранняя вселенная). В первые 10-10 с они обеспечивали объединение слабых ядерных и электромагнитных сил в электрослабое взаимодействие. Лишь начиная с этого момента окончательно разделились все четыре известные нам силы. До этого момента существовали всего три фундаментальные силы: сильного, электрослабого и гравитационного взаимодействий.

Следующее объединение происходит при энергиях далеко за пределами достижимых в условиях земных лабораторий — они существовали во Вселенной в первые 10-35 c ее существования. Начиная с этих энергий, электрослабое взаимодействие объеди


няется с сильным. Теории, описывающие процесс такого объединения, называются теориями большого объединения (ТБО). Проверить их на экспериментальных установках невозможно, но они хорошо прогнозируют течение целого ряда процессов, протекающих при более низких энергиях, и это служит косвенным подтверждением их истинности. Однако на уровне ТБО наши возможности в плане проверки универсальных теорий исчерпываются. Далее начинается область теорий суперобъединения (ТСО) или всеобщих теорий — и при одном упоминании о них в глазах у физиков-теоретиков загорается блеск. Непротиворечивая ТСО позволила бы объединить гравитацию с единым сильно-электрослабым взаимодействием, и строение Вселенной получило бы простейшее из возможных объяснений.


Униформизм

Земля

сформировалась в ходе процессов, которые

продолжаются и по сей день


1666 • ЗАКОН ПОСЛЕДОВАТЕЛЬНОСТИ НАПЛАСТОВАНИЯ

ГОРНЫХ ПОРОД


1788 • УНИФОРМИЗМ


кон. XVIII • ЦИКЛ

ПРЕОБРАЗОВАНИЯ ГОРНОЙ ПОРОДЫ


ок. 1930, • МАССОВЫЕ 1980 ВЫМИРАНИЯ


Одним из главных достижений конца XIX — начала XX в. стало открытие того, что писатель Джон Макфи назвал глубиной веков, — факта огромной древности нашей планеты. Пионером в этих исследованиях стал шотландский ученый Джеймс Геттон. Он показал, что в формировании Земли участвовали многие процессы — эрозия (разрушение пород и почвы под воздействием ветра и воды), осад-конакопление (отложение осадочных пород) и поднятие (процесс образования гор). Геттон утверждал, что нынешний облик Земли можно объяснить воздействием этих процессов в течение длительного периода. Во времена, когда почти все поголовно считали, что прошлое планеты объясняется ее божественным созданием и такими событиями, как Всемирный потоп, эта идея была революционной. Вокруг нее быстро собрались сторонники, а Геттон и его последователи находили все новые и новые доказательства для ее подтверждения. Таким образом, Геттон первым сформулировал известный нам принцип униформизма.

Идеи Геттона влились в строгую и исчерпывающую теорию Чарлза Лайеля. Под девизом «Настоящее — ключ к познанию прошлого» он провозгласил основную идею униформизма: Земля сформировалась под влиянием постоянных геологических факторов, действующих и в современную эпоху. Для примера Лайель измерил на Сицилии толщину излившейся лавы, дабы показать, что гора Этна могла сформироваться в результате накопления этой застывшей лавы. Он также измерил эрозию, вызванную Ниагарским водопадом, и объявил, что настоящее местонахождение водопада можно объяснить постепенным разрушением горных пород под воздействием реки Ниагары.

Учение Лайеля легло в основу всех наук о Земле, опровергая господствующую в то время теорию катастроф, согласно которой Земля образовалась в результате единичных катастрофических событий наподобие Всемирного потопа. Униформизм со временем расширился до границ учения под названием градуализм, в котором считается, что процессы прошлого не только продолжаются в настоящем, но и протекают с той же скоростью. Это пристрастие к градуализму среди европейских ученых было так велико, что когда появились свидетельства существования в прошлом единичных катастрофических событий, это было воспринято с совершенно неоправданным скептицизмом и враждебностью. Например, гипотеза Альвареса, согласно которой массовое вымирание динозавров было вызвано столкновением Земли с астероидом, с трудом находила признание из-за этого предубеждения. (В действительности же такое единичное событие, как столкновение с астероидом, не противоречит униформизму в широком смысле слова — это просто еще одно природное явление.)

Как ни странно звучит, но теперь оказалось, что древнее пугало геологов — Всемирный потоп — на самом деле могло иметь историческую основу: разлив океанических бассейнов после последнего ледникового периода. Кажется, сейчас предубеждение


ученых против теории катастроф в значительной мере исчезло, и мы стремимся интерпретировать данные и рассматривать прошлое нашей планеты с точки зрения разрозненных единичных событий вопреки основам градуализма.



ДЖЕЙМС ГЕТТОН (Хаттон) (James Hutton, 1726-1797) — шотландский геолог. Родился в семье торговца в Эдинбурге. В те времена Эдинбург представлял собой одну из интеллектуальных столиц Европы, и Геттон встречался в обществе с такими людьми, как Адам Смит (основатель политической экономии) и Джеймс Уатт (изобретатель парового двигателя). Геттон получил степень доктора медицины в Эдинбургском университете, а также обучался в Париже и Лейдене, но никогда не занимался медицинской практикой. Позже он изучил право и успешно управлял промышленным предприятием. В 1754 году Геттон вступил во владение небольшой фермой и начал изучать сельское хозяйство и химию, что и привело его в конце концов к минералогии и геологии. Проведя многие горы в путешествиях и исследованиях, он опубликовал в 1788 году труд «Теория Земли», благодаря которому геология выросла в современную научную дисциплину.

ЧАРЛЗ ЛАЙЕЛЬ (Лайелл) (Charles Lyell, 1797-1875) — шотландский геолог. Родился в городе Киннорди в известной шотландской семье, отец его был ботаником. Лайель изучал право в Оксфордском университете; услышанные там лекции по геологии пробудили его интерес к этой науке. Некоторое время работал адвокатом, так как из-за напряженного чтения его беспокоили глаза, но затем отказался от адвокатской практики и полностью посвятил себя геологии. Лайель много путешествовал, наблюдая геологические формации, и его труд «Основы геологии», опубликованный в 1830 году, стал одной из самых значительных научных книг. Например, Чарлз Дарвин взял экземпляр этой книги с собой в путешествие на корабле «Бигль» и использовал ее при написании своего труда «Происхождение видов». Однако Лайель не торопился принять дарвиновскую теорию эволюции и сомневался, что она применима к человеку.


Уравнение Бернулли




1687
Чем выше скорость потока идеальной жидкости, тем ниже ее давление


1738
законы механики ньютона


1842

УРАВНЕНИЕ БЕРНУЛЛИ


термодинамика, первое начало


Вам не приходило в голову, почему самолеты весом в сотни тонн, разогнавшись, отрываются от взлетно-посадочной полосы и устремляются ввысь? Если нет, то для начала, когда в следующий раз будете в аэропорту, внимательно приглядитесь к разрезу крыла самолета. Прежде всего обратите внимание, что крыло в разрезе представляет собой сочетание двух выпуклых линий, причем кривизна верхнего контура больше, чем кривизна нижнего, в результате чего площадь верхней поверхности крыла больше площади его нижней поверхности. Именно эта малозаметная для непосвященных деталь конструкции и позволяет самолету отрываться от поверхности земли.

А основополагающая идея здесь такова: воздушный поток разрезается надвое передней кромкой крыла, и часть его обтекает крыло вдоль верхней поверхности, а вторая часть — вдоль нижней. Чтобы двум потокам сомкнуться за задней кромкой крыла, не образуя вакуума, воздух, обтекающий верхнюю поверхность крыла, должен двигаться быстрее относительно самолета, чем воздух, обтекающий нижнюю поверхность, поскольку ему нужно преодолеть большее расстояние. И тут в действие вступает эффект, открытый Даниилом Бернулли, одним из представителей настоящей потомственной династии неутомимых научных гениев родом из Швейцарии. (В авторитетном «Словаре научных биографий», Dictionary of Scientific Biography, упомянуто не меньше восьми представителей фамилии Бернулли.) Отец Даниила — Иоганн Бернулли — был видным профессором математики в университете г. Гронинген. Позже Иоганн Бернулли переехал в Базель и возглавил кафедру греческого языка местного университета, однако после смерти брата вернулся в Гронинген, чтобы сменить его на посту заведующего кафедрой математики. Книга Даниила «Гидродинамика» (Hydrodynamica) была опубликована в 1738 году практически одновременно с книгой Иоганна Бернулли «Гидравлика» (Hydraulica), которая по взаимной договоренности между сыном и отцом была, однако, специально датирована 1732 годом, чтобы в случае чего в семье не возникло недоразумений относительно приоритетов в открытиях. Вот такая семья!






Эффект Бернулли — это то, благодаря чему птицы и самолеты могут летать. Разрез крыла у них практически одинаковый: за счет сложной формы крыла создается разница обтекающих его сверху и снизу воздушных потоков, что позволяет телу подниматься вверх


Объединив законы механики ньютона с законом сохранения энергии (см. первое начало термодинамики) и условием неразрывности жидкости, Даниил Бернулли смог вывести уравнение, согласно которому давление со стороны текучей среды падает с увеличением скорости потока этой среды (понятие «текучая среда» включает жидкость или газ). В случае с самолетом воздух обтекает крыло самолета снизу медленнее, чем сверху. И благодаря этому эффекту обратной зависимости давления от скорости давление воздуха снизу, направленное вверх, оказывается больше давления сверху, направленного вниз. В результате по мере набора самолетом скорости возрастает направленная вверх разность давлений и на крылья самолета действует нарастающая по мере разгона подъемная сила. Как только она начинает превышать силу гравитационного притяжения самолета к земле, самолет в буквальном смысле взмывает в небо. Эта же сила удерживает самолет в горизонтальном полете: на крейсерской скорости и высоте подъемная сила уравновешивает силу тяжести.

Если вы часто летаете самолетом, вы не могли не заметить и еще одного явления, напрямую связанного с эффектом Бернулли. Самолет в аэропорту вашего родного города в разные дни берет разгон по взлетно-посадочной полосе в противоположных направлениях и садится на нее также то в одном, то в другом направлении. Выбор направления не произволен: он зависит от направления ветра. При движении навстречу преобладающему ветру скорость воздушного потока, обтекающего крыло самолета, равна скорости самолета относительно земли плюс скорость самого ветра относительно земли. Поэтому при движении навстречу ветру, скорость отрыва от земли, при которой подъемная сила, описываемая уравнением Бернулли, начинает превышать силу тяжести, оказывается ниже и самолету требуется меньшая длина разбега или торможения после посадки. Тем самым снижается риск выхода за пределы взлетно-посадочной полосы и экономится горючее за счет того, что часть подъемной силы создается благодаря энергии встречного ветра.

С эффектом Бернулли вы можете встретиться также, когда сидите ненастным вечером дома у камина. Во время особенно сильных порывов ветра языки пламени взмывают вверх, в дымоход. А происходит следующее: когда скорость ветра у выходного отверстия трубы возрастает, давление в этом месте падает. Более высокое давление внутри дома буквально «выталкивает» пламя из камина в дымоход. Вы, наверное, замечали спиральные лопатки вокруг выходных отверстий заводских труб. Они установлены там с той же целью: направляя ветер вокруг и над отверстием трубы, они способствуют белее эффективному выбросу отработанных газов.

Сам я использую эффект Бернулли весьма неожиданным образом. Для поддержания физической формы я у себя в Вашингтоне регулярно совершаю пробежки на роликовых коньках по специальной заасфальтированной дорожке, идущей вдоль реки


Потомак. На трек я выхожу неподалеку от Национального аэропорта и, еще паркуя свою машину, первым делом смотрю, в каком направлении взлетают или приземляются авиалайнеры. Если они садятся или взлетают в том направлении, куда я собираюсь прокатиться, значит, все в порядке и на обратном пути мне будет помогать попутный ветер. Если же они садятся мне навстречу, значит, дистанцию пробежки лучше сократить, поскольку на обратном пути ветер будет дуть мне в лицо, а я этого не люблю. Тем самым эффект Бернулли позволяет мне точно дозировать ежедневные физические нагрузки.


ДАНИИЛ БЕРНУЛЛИ (Daniel Bernoulli, 1700-82) — швейцарский математик, физик и физиолог. Родился в Гронингене (Нидерланды) в семье потомственных математиков и интеллектуалов. Первоначально получил медицинское образование и в 1725 году принял приглашение Петербургской академии наук и занял пост профессора кафедры физиологии. Обнаружив в этой области множество нерешенных задач из области теоретической физики и, в частности, динамики движения жидкости (крови) в сосудах, вернулся к математическому описанию физических процессов и в 1730 году возглавил кафедру чистой математики Петербургской академии. В 1733 году вернулся на родину в Базель, где возглавил кафедру анатомии и ботаники местного университета, а с 1750 года — кафедру экспериментальной физики, которой и руководил до своей смерти. В результате изучения гидродинамических зависимостей сформулировал так называемый принцип Бернулли и на столетие предвосхитил

зарождение молекулярно-кинети -ческой теории.


Уравнение Клапейрона— Клаузиуса

Теплота испарения возрастает по мере роста температуры и давления пара


1761 • фазовые переходы


1798 • механическая теория теплоты


1834 • УРАВНЕНИЕ

КЛАПЕЙРОНА— КЛАУЗИУСА


1849 • молекулярно-

кинетическая теория


Как МЫ Знаем ИЗ молекулярно-кинетической теории,

атомы или молекулы в жидкостях и газах находятся в состоянии постоянного движения. Время от времени отдельные молекулы жидкости, движущиеся достаточно быстро, могут «срываться» с ее поверхности. Таким образом, над любой жидкостью какое-то количество молекул данного вещества будет находиться в виде пара. Давление этих молекул, если нет посторонних примесей, называется давлением пара этого вещества. Иногда можно почувствовать это присутствие пара над жидкостью — вспомните характерное ощущение влажности на берегу моря или океана.

Нам также известно, что для перевода вещества из жидкого в газообразное состояние (см. фазовые переходы) нужно затратить некоторую энергию. Эта энергия называется теплотой испарения, или теплотой парообразования. Уравнение Клапейрона—Клаузиуса как раз и описывает отношение между теплотой испарения H, давлением пара p и температурой T вещества:

lnp = HIRT + константа,

где lnp — натуральный логарифм, взятый от величины давления пара, а R — постоянная ридберга. Температура T измеряется в кельвинах.

Первым эту зависимость в 1834 году вывел инженер-конструктор паровых машин Бенуа Клапейрон. Естественно, в силу его специальности, Клапейрона интересовала прежде всего теплота парообразования, и он использовал свое уравнение преимущественно в инженерно-прикладных целях. Для науки же уравнение теплоты фазового перехода было повторно открыто почти два десятилетия спустя Рудольфом Клаузиусом, автором формулировки второго начала термодинамики.

Чаще всего уравнение Клапейрона—Клаузиуса используется для простого расчета или измерения теплоты испарения различных веществ. Измеряя давление пара при различных температурах и нанося его на график, по одной оси которого откладывается значение lnp, а по другой — величина 1/Т, ученые по полученной линейной зависимости (углу наклона прямой) определяют теплоту испарения вещества.