Джеймс трефил

Вид материалаЗакон

Содержание


Термодинамика, второе начало
Холодильник не работает, если он не включен в розетку.
Термодинамика, первое начало
Третье начало
Абсолютный ноль
Первое начало термодинамики
Зависимость количества видов от площади экосистемы
Подобный материал:
1   ...   34   35   36   37   38   39   40   41   ...   50

ТЕРМОДИНАМИКА, ВТОРОЕ НАЧАЛО


1905

демон максвелла


термодинамика,

третье начало


Природным процессам свойственна направленность и необратимость, однако в большинстве законов, описанных в этой книге, это не находит отражения — по крайней мере явного. Разбить яйца и сделать яичницу не сложно, воссоздать же сырые яйца из готовой яичницы — невозможно. Запах из открытого флакона духов наполняет комнату — однако обратно во флакон его не соберешь. И причина такой необратимости процессов, происходящих во Вселенной, кроется во втором начале термодинамики, который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики.

Прежде всего у этого закона имеется как минимум три равноправные формулировки, предложенные в разные годы физиками разных поколений. Может показаться, что между ними нет ничего общего, однако все они логически эквивалентны между собой. Из любой формулировки второго начала математически выводятся две другие.

Начнем с первой формулировки, принадлежащей немецкому физику Рудольфу Клаузиусу (см. уравнение клапейрона—кла-узиуса). Вот простая и наглядная иллюстрация этой формулировки: берем из холодильника кубик льда и кладем его в раковину. По прошествии некоторого времени кубик льда растает, потому что теплота от более теплого тела (воздуха) передастся более холодному (кубику льда). С точки зрения закона сохранения энергии нет причин для того, чтобы тепловая энергия передавалась именно в таком направлении: даже если бы лед становился все холоднее, а воздух все теплее, закон сохранения энергии все равно бы выполнялся. Тот факт, что этого не происходит, как раз и свидетельствует об уже упоминавшейся направленности физических процессов.

Почему именно так взаимодействуют лед и воздух, мы можем легко объяснить, рассматривая это взаимодействие на молекулярном уровне. Из молекулярно-кинетической теории мы знаем, что температура отражает скорость движения молекул тела — чем быстрее они движутся, тем выше температура тела. Значит, молекулы воздуха движутся быстрее молекул воды в кубике льда. При соударении молекулы воздуха с молекулой воды на поверхности льда, как подсказывает нам опыт, быстрые молекулы в среднем замедляются, а медленные ускоряются. Таким образом, молекулы воды начинают двигаться все быстрее, или, что то же самое, температура льда повышается. Именно это мы имеем в виду, когда говорим, что тепло передается от воздуха ко льду. И в рамках этой модели первая формулировка второго начала термодинамики логически вытекает из поведения молекул.

При перемещении какого-либо тела на какое-либо расстояние под действием определенной силы совершается работа, и различные формы энергии как раз и выражают способность системы произвести определенную работу. Поскольку теплота, отражающая кинетическую энергию молекул, представляет собой одну из форм энергии, она тоже может быть преобразована в работу. Но опять


мы имеем дело с направленным процессом. Перевести работу в теплоту можно со стопроцентной эффективностью — вы делаете это каждый раз, когда нажимаете на педаль тормоза в своем автомобиле: вся кинетическая энергия движения вашего автомобиля плюс затраченная вами энергия силы нажатия на педаль через работу вашей ноги и гидравлической системы тормозов полностью превращается в теплоту, выделяющуюся в процессе трения колодок о тормозные диски. Вторая формулировка второго начала термодинамики утверждает, что обратный процесс невозможен. Сколько ни пытайтесь всю тепловую энергию превратить в работу — тепловые потери в окружающую среду неизбежны.

Проиллюстрировать вторую формулировку в действии несложно. Представьте себе цилиндр двигателя внутреннего сгорания вашего автомобиля. В него впрыскивается высокооктановая топливная смесь, которая сжимается поршнем до высокого давления, после чего она воспламеняется в малом зазоре между головкой блока цилиндров и плотно пригнанным к стенкам цилиндра свободно ходящим поршнем. При взрывном сгорании смеси выделяется значительное количество теплоты в виде раскаленных и расширяющихся продуктов сгорания, давление которых толкает поршень вниз. В идеальном мире мы могли бы достичь КПД использования выделившейся тепловой энергии на уровне 100%, полностью переведя ее в механическую работу поршня.

В реальном мире никто и никогда не соберет такого идеального двигателя по двум причинам. Во-первых, стенки цилиндра неизбежно нагреваются в результате горения рабочей смеси, часть теплоты теряется вхолостую и отводится через систему охлаждения в окружающую среду. Во-вторых, часть работы неизбежно уходит на преодоление силы трения, в результате чего опять же нагреваются стенки цилиндров — еще одна тепловая потеря (даже при самом хорошем моторном масле). В-третьих, цилиндру нужно вернуться к исходной точке сжатия, а это также работа по преодолению трения с выделением теплоты, затраченная вхолостую. В итоге мы имеем то, что имеем, а именно: самые совершенные тепловые двигатели работают с КПД не более 50%.

Такая трактовка второго начала термодинамики заложена в принципе карно, который назван так в честь французского военного инженера Сади Карно. Она сформулирована раньше других и оказала огромное влияние на развитие инженерной техники на многие поколения вперед, хотя и носит прикладной характер. Огромное значение она приобретает с точки зрения современной энергетики — важнейшей отрасли любой национальной экономики. Сегодня, сталкиваясь с дефицитом топливных ресурсов, человечество тем не менее вынуждено мириться с тем, что КПД, например, ТЭЦ, работающих на угле или мазуте, не превышает 30-35% — то есть две трети топлива сжигается впустую, точнее, расходуется на подогрев атмосферы — и это перед лицом угрозы глобального потепления. Вот почему современные ТЭЦ легко узнать по колоссальным башням-градирням — именно в них остужается вода, охлаждающая турбины электрогенераторов, и избытки тепловой энергии выбрасываются в окружающую среду. И столь низкая эффективность использования ресурсов — не вина, а беда современных инженеров-конструкторов: они и без того выжимают близко к максимуму того, что позволяет цикл Карно. Те же, кто заявляет, что нашел решение, позволяющее резко сократить тепловые потери энергии (например, сконструировал вечный двигатель), утверждают тем самым, что они перехитрили второе начало термодинамики. С тем же успехом они могли бы утверждать, что знают, как сделать так, чтобы кубик льда в раковине не таял при комнатной температуре, а, наоборот, еще больше охлаждался, нагревая при этом воздух.

Третья формулировка второго начала термодинамики, приписываемая обычно австрийскому физику Людвигу Больцману (см. постоянная больцмана), пожалуй, наиболее известна. Энтропия — это показатель неупорядоченности системы. Чем выше энтропия, тем хаотичнее движение материальных частиц, составляющих систему. Больцману удалось разработать формулу для прямого математического описания степени упорядоченности системы. Давайте посмотрим, как она работает, на примере воды. В жидком состоянии вода представляет собой довольно неупорядоченную структуру, поскольку молекулы свободно перемещаются друг относительно друга, и пространственная ориентация у них может быть произвольной. Другое дело лед — в нем молекулы воды упорядочены, будучи включенными в кристаллическую решетку. Формулировка второго начала термодинамики Больцмана, условно говоря, гласит, что лед, растаяв и превратившись в воду (процесс, сопровождающийся снижением степени упорядоченности и повышением энтропии), сам по себе никогда из воды не возродится. И снова мы видим пример необратимого природного физического явления.

Тут важно понимать, что речь не идет о том, что в этой формулировке второе начало термодинамики провозглашает, что энтропия не может снижаться нигде и никогда. В конце концов, растопленньгй лед можно поместить обратно в морозильную камеру и снова заморозить. Смысл в том, что энтропия не может уменьшаться в замкнутых системах — то есть в системах, не получающих внешней энергетической подпитки. Работающий холодильник не является изолированной замкнутой системой, поскольку он подключен к сети электропитания и получает энергию извне — в конечном счете от электростанций, ее производящих. В данном случае замкнутой системой будет холодильник, плюс проводка, плюс местная трансформаторная подстанция, плюс единая сеть энергоснабжения, плюс электростанции. И поскольку рост энтропии в результате беспорядочного испарения из градирен электростанции многократно превышает снижение энтропии за счет кристаллизации льда в вашем холодильнике, второе начало термодинамики ни в коей мере не нарушается.

А это, я полагаю, приводит еще к одной формулировке второго начала: Холодильник не работает, если он не включен в розетку.


Термодинамика, первое начало

Теплота представляет собой особую форму энергии и должна учитываться в законе сохранения и превращения энергии


В физике работой называется перемещение массы на определенное расстояние под воздействием силы. Чтобы поднять эту книгу, например, вам нужно приложить силу, направленную вверх, чтобы преодолеть направленную вниз силу гравитационного притяжения на всем отрезке пути, на который вы поднимаете книгу, и тем самым вы совершаете работу. Для совершения работы тело, которое ее совершает, должно обладать запасом энергии, необходимым для совершения этой работы. То есть энергия — это способность совершить работу. С научной точки зрения энергия обладает тремя важнейшими свойствами: во-первых, она может проявляться в различных формах; во-вторых, различные виды энергии могут переходить друг в друга; в-третьих, при любых физических процессах совокупная энергия в замкнутой системе сохраняется.


1798


1824


1842


1850


1905


механическая теория теплоты


цикл и теорема карно


ТЕРМОДИНАМИКА, ПЕРВОЕ НАЧАЛО


термодинамика, второе начало


термодинамика,

третье начало


Энергия движения

Движущееся тело способно оказывать силовое воздействие на другие тела на отрезке своего пути, и вы такие явления, бесспорно, наблюдали. Представьте себе стрелу, летящую к мишени. Врезаясь в мишень, стрела оказывает силовое воздействие на ее волокна и раздвигает их. Следовательно, движущееся тело способно совершить работу, и значит, по определению, оно обладает энергией. Энергия движения такого рода называется кинетической энергией (от греческого Ыпе218 — «движение»). Согласно механической теории теплоты, теплота — это проявление движения молекул вещества, и значит, ее можно считать особым видом кинетической энергии.


Энергия положения

Если вы поднимете эту книгу вверх, она сможет затем совершать работу уже в силу своего нового положения в гравитационном поле Земли. Чтобы убедиться в этом, отпустите книгу — и она упадет. Падая, книга разгонится до определенной скорости и, следовательно, приобретет некоторую кинетическую энергию. Упав на пол или на стол, она окажет силовое воздействие на поверхность и едва заметно деформирует ее, одновременно слегка деформировавшись и сама. То есть, находясь на изначальной высоте, книга уже обладала определенным запасом энергии — мы называем ее потенциальной энергией. Будучи поднятой на определенную высоту, книга не совершает никакой работы, однако имеет возможность ее совершить — если книгу уронят. Если быть точным, энергию книги надо назвать потенциальной энергией гравитационного поля, поскольку книга обладает этой энергией благодаря тому, что она находится в гравитационном поле. Именно поле реально производит работу при падении книги. Если вы поднимете книгу в космическом корабле, находящемся в межзвездном пространстве, где нет гравитационного поля, она вообще не упадет, поскольку не будет обла


дать потенциальной энергией гравитационного поля*. И резинка рогатки, и тетива лука, будучи натянутыми, приобретают потенциальную энергию силы упругости, которая может совершать работу, если их отпустить.

Точно так же электрически заряженная частица, помещенная в электрическое поле, обладает электрической потенциальной энергией. Мы видим это в атоме (см. атомная теория строения вещества): энергия электрона зависит от удаленности его орбиты от положительно заряженного ядра. Электрическая потенциальная энергия особого рода участвует в химических взаимодействиях между атомами. Электроны в каждом атоме обладают определенной электрической потенциальной энергией, зависящей от их места в атоме. После объединения атомов в молекулы эти же электроны будут обладать уже другой энергией, обусловленной их новым положением. Обычно суммарная энергия до и после химического взаимодействия не одинакова. Энергию, обеспечивающую возможность такого изменения электронной конфигурации атомов, мы называем химической потенциальной энергией.

Имеется множество видов потенциальной энергии, связанных с магнитными и электрическими полями, с различными свойствами веществ и т.д. Потенциальная энергия присутствует в любой системе, где может быть совершена работа, которая до сих пор не совершена.


Энергия массы



* На первый взгляд, это противоречит нашим ин­туитивным представле­ниям. Объяснение же таково. В открытом космосе, где нет значи­тельных гравитацион­ных полей, потенциаль­ная энергия, очевидно, должна быть равна нулю. Поскольку при падении тела в направлении звезды или планеты потенциаль­ная энергия теряется, ее значение должно стать отрицательным. Потен­циальная энергия книги массой 1 кг в гравитаци­онном поле у поверхности Земли составит около -6 х 107 Джоулей, а если книгу поднять на высоту 1000 км, ее потенциаль­ная энергия возрастет до -5 х 107 Джоулей. (Приме­чание автора)

В рамках теории относительности Эйнштейн открыл совершенно неожиданную для всех форму энергии. Оказывается, масса может преобразовываться в энергию, и это получило отражение в формуле Е = тс2, где с — скорость света в вакууме (3 х 108 м/с). Из этой формулы следует, что мизерная масса может быть преобразована в колоссальную энергию — и это действительно происходит при ядерном распаде урана в атомных реакторах. Из этой же формулы следует, что для искусственного получения даже самых малых масс материи требуются колоссальные затраты энергии. И действительно, на современных ускорителях элементарных частиц протоны разгоняются почти до скорости света, и лишь тогда в результате обстрела ими мишени часть кинетической энергии протонов преобразуется в новые элементарные частицы.


Превращение и сохранение энергии

Различные виды энергии взаимозаменяемы — энергия может переходить из одного вида в другой. Например, когда лучник выпускает стрелу, потенциальная энергия упругого натяжения тетивы преобразуется в кинетическую энергию летящей стрелы, а при попадании стрелы в мишень — в тепловую энергию рассеяния. Все виды энергии, за исключением тепловой, могут полно-


стью преобразовываться друг в друга (тепловая энергия, согласно второму началу термодинамики, может преобразовываться в работу лишь частично).

Преобразование одного вида энергии в другой носит отнюдь не случайный характер, поскольку в замкнутых системах выполняется закон сохранения энергии. Это значит, что в замкнутой изолированной системе совокупное количество энергии со временем не меняется, хотя энергия может принимать различную форму. Предположим, вы располагаете фиксированной суммой денежных средств, распределенных по различным банковским счетам и депозитам: часть ваших денег хранится на текущем сберегательном счете, часть вложена в акции и облигации и т.д. С вашими деньгами вы можете поступить по-разному: можно их все перечислить на единственный счет, можно распределить их по всем счетам равномерно или же положить на разные счета разное количество денег. Однако, что бы вы ни делали, ваш совокупный капитал останется неизменным. (Для простоты мы не учитываем начисление процентов по вкладам и ценным бумагам.) точно так же, принимая различные формы и перераспределяясь, энергия ниоткуда не поступает и никуда не исчезает. В этом и заключается закон сохранения энергии, который гласит: полная энергия замкнутой системы остается постоянной.


Термодинамика, третье начало


1842
Невозможно за конечное время довести температуру тела до абсолютного нуля


1850

термодинамика, первое начало


1905

термодинамика, второе начало


ТЕРМОДИНАМИКА,

ТРЕТЬЕ НАЧАЛО


Энергия нулевой точки

Бильярдный шар, катящийся по столу, рано или поздно остановится, израсходовав свою кинетическую энергию на преодоление силы трения, при этом энергия движения шара перейдет в тепло — так утверждает первое начало термодинамики. На квантовую частицу (например, на электрон в атоме) это не распространяется в силу принципа неопределенности гей-зенберга. Этот принцип гласит, что невозможно точно и одновременно установить пространственные координаты и скорость квантовой частицы. (См. с. 416)


Абсолютный ноль — это одна из концепций с интригующим названием и обманчиво простым определением. До наступления эры квантовой механики определение абсолютного нуля действительно было предельно простым. молекулярно-кинетическая

теория выявила статистическую связь между движениями атомов и молекул и температурой, и природу температуры стало возможно представить наглядно: чем быстрее движутся молекулы, тем выше температура, и наоборот. При такой картине нетрудно догадаться, что имеется нижний предел температуры, по достижении которого атомы и молекулы перестают двигаться окончательно. Значение абсолютного нуля оказалось равным 273°С.

В рамках квантовой механики значение абсолютного нуля не изменилось, однако в корне изменилось наше представление о том, как ведут себя атомы. Если бы атомы просто остановились как вкопанные, мы бы в таком случае могли одновременно измерить их скорость и местоположение с абсолютной точностью, а это нарушение принципа неопределенности гейзенберга. Поэтому даже при абсолютном нуле атом должен представляться нам слегка расплывчатым, если использовать волновое представление о нем, или слегка колеблющимся, если использовать корпускулярную концепцию. Поэтому нам следует говорить, что при абсолютном нуле атом не прекращает всякое движение, а лишь приходит в такое колебательное состояние, при котором он более не способен отдавать энергию вовне (такая остаточная энергия атома называется энергией нулевой точки). Конечный же итог с макроскопической точки зрения остается неизменным: имеется минимальное значение возможной температуры вещества, и оно равно все тем же -273°С.

На самом деле существование энергии нулевой точки хорошо иллюстрирует весьма интересный момент в квантовой теории. При стремлении температуры к абсолютному нулю волновая природа материи (см. уравнение шрёдингера) становится все очевиднее и важнее, а квантово-механические эффекты начинают преобладать над эффектами классической механики, при которых атом ведет себя подобно бильярдному шару.

Так получилось, что -273°С — единственная температура, фигурирующая в фундаментальных физических законах. Она же используется и в определении температурной шкалы Кельвина, которая в основном используется в точных науках. За ноль в ней принимается абсолютный ноль, а единичное деление шкалы принимается равным 1° по привычной шкале Цельсия. Таким образом, по шкале Кельвина абсолютный ноль равен 0, точка замерзания воды приходится на 273, а комнатная температура составляет около 300.

Третье начало термодинамики просто констатирует, что абсолютный ноль недостижим — и в этом он похож на скорость света: материальное тело может сколь угодно близко подойти к нему, но достичь — никогда. Дело в том, что чем ближе система подходит к


Если бы электрон полностью остановился, мы бы могли зафиксировать и его положение, и его нулевую скорость, а это невозможно. Таким образом, квантовые частицы в отличие от классических всегда находятся в некоем вибрирующем движении, делающем их образ слегка размытым: они всегда где-то около своей центральной точки и скорость их также постоянно колеблется. А это значит, что у квантовой частицы всегда имеется какая-то остаточная энергия. Эта остаточная энергия нулевой точки, или нулевого уровня возбуждения, предсказываемая квантовой механикой, — явление весьма неожиданное и специфическое. Пожалуй, это единственный случай, когда энергия материальной частицы не может ни отдаваться вовне, ни изменяться. По сути это минимальная энергия квантовой частицы, при которой не нарушаются законы квантовой механики. Расчет квантовой энергии нулевой точки обычно дает хорошее приближение энергии покоя частицы — например, электрона на нижней

орбите в модели атома бора, не требуя при Этом

громоздких вычислений, которые необходимы при более точных расчетах.


абсолютному нулю температуры, тем больше работы нужно затратить на ее дальнейшее охлаждение. На самом деле в лабораторных условиях ученым удавалось получать температуры предельно близкие к нулевой. Сегодня температуры, отстоящие от абсолютного нуля на миллиардные доли градуса, можно получить практически в любой криогенной лаборатории.

Способов понижения температуры материального тела имеется достаточно много. Можно испарять жидкость с его поверхности, и она будет отнимать теплоту у тела — именно поэтому люди потеют в жару. Можно резко расширять газ, находившийся под высоким давлением, — вот почему охлаждается аэрозольный баллончик, когда вы долго выпускаете из него содержимое. Подобными методами ученые доводят температуру до уровня нескольких градусов выше абсолютного нуля. Однако, чтобы получить по-настоящему сверхнизкие температуры, приходится надолго подвешивать незначительное количество атомов вещества в сильных электростатических и магнитных полях. После этого подвешенные атомы обрабатываются лазерным лучом определенной длины волны, который сначала заставляет атомы испустить остатки энергии возбужденных электронов в виде световых квантов, а затем — разогнать атомы врозь, как бы распрыскать их из аэрозольного баллончика. Именно так сегодня получаются температуры порядка нескольких нанокельвинов (1нК = 10-9 К). Однако, как далеко ни пошло бы развитие нашей техники, третье начало термодинамики говорит нам, что мы не только не перейдем барьера абсолютного нуля, но даже не достигнем его.

Один физик с хорошим чувством юмора дал собственные формулировки трех начал термодинамики:

Первое начало термодинамики: Вам не выиграть. Второе начало термодинамики: Вам не сыграть вничью. Третье начало термодинамики: Вам даже сыграть не дадут.

ок. 1900
Территориальность у животных

Многие животные (или группы животных) защищают территорию от других представителей своего вида




ЗАВИСИМОСТЬ КОЛИЧЕСТВА ВИДОВ ОТ ПЛОЩАДИ ЭКОСИСТЕМЫ