А. Ф. Лосев история античной эстетики итоги тысячелетнего развития история античной эстетики, том VIII, книги I и II м.: "Искусство", 1992, 1994 книга

Вид материалаКнига
Подобный материал:
1   ...   37   38   39   40   41   42   43   44   ...   50
§3. Зрелая и поздняя классика


Поскольку многое из остальных периодов учения о числе в свое время излагалось нами весьма подробно, в настоящем общем обзоре можно будет иной раз ограничиваться лишь краткими замечаниями.


1. Платон

Учение Платона о числе разработано у этого представителя развитой и зрелой классики очень глубоко. Этому у нас было посвящено много места (ИАЭ II 311 - 405). Мы пришли к выводу, что вся система Платона, особенно позднего периода, буквально пронизана числовыми теориями и числовыми интуициями. Теория Платона сводится к следующему.

а) Произведя четкое отличие отвлеченных чисел от именованных с правильным усмотрением обобщенности первых (Theaet. 196a) и утвердив объективно-бытийственную значимость отвлеченного числа (Soph. 238a), именно общевеличинную, а не прикладную (Gorg. 451bc. R.P. VII=522b - 526b и особенно 524b), Платон требует признать за каждым числом не только его делимость на отдельные единицы, но и его как цельную и неделимую субстанцию, подобно тому, как мы говорим "тысяча" без всякого раздельного представления обозначаемых этими словами отдельных единиц; любое число, большое или малое, целое или дробное, всегда есть нечто, значит, есть нечто неделимое, поскольку никакая целость вообще не сводится на сумму своих частей. Это и есть "числа сами по себе", без которых мышление не обходится и которые ведут к истине (525d - 526a).

Платону принадлежит также и самая четкая диалектика числа, с которой в описательном виде мы встречались еще и в ранней классике. У Платона она дается сознательно - как чисто категориальная диалектика. Именно, всякое число занимает среднее место между неделимой единицей и бесконечностью единиц, или, как он говорит, между пределом и беспредельным (Phileb. 16d, 18a, 24e - 25e, а также Parm. 143d - 144a). Здесь явно мыслится нечто вроде геометрической фигуры, начерченной на бесконечном и бесформенном фоне. Чтобы такая фигура получилась, нужно сразу и одновременно представлять себе как беспредельный фон, так и необходимую для данной фигуры границу между данной определенной фигурой и ее неопределенным фоном. Ясно, что Платон оперирует здесь не только с диалектикой, но и с весьма отчетливой интеллектуальной интуицией.

б) Эта интеллектуально-интуитивная диалектика особенно ярко выступает в тех местах из сочинений Платона, где специально анализируются категории непрерывности. Необходимые тексты для этого платоновского континуума у нас тоже приводились раньше (II 326 - 327). О том, что для возникновения континуума необходимо тождество появления и тут же исчезновения каждой раздельной точки движения, весьма отчетливо трактует "Парменид", как это мы отмечаем на указанных у нас сейчас страницах II тома нашей "Истории". Но эту непрерывность Платон трактует как в ноуменальной области, так и в чувственно-материальной области, так что разделение умопостигаемой и чувственной материи впервые было высказано не Плотином, но уже Платоном. Точно так же и диалектика слияния прерывности и непрерывности в однофигурное целое и для умственной и для чувственной области с безукоризненной отчетливостью тоже проведена Платоном.

Обширная литература о платоновских математических теориях приведена у нас в своем месте (ИАЭ II 699 - 701).


2. Аристотель

Как мы хорошо знаем, основное отличие Аристотеля от Платона заключается в чрезвычайно внимательном и зорком отношении Аристотеля к частностям и ко всему единичному в сравнении с общими категориями и особенно с предельно-общими. Это мы называли дистинктивно-дескриптивным характером всего аристотелизма. Аристотель ни в каком случае не отрицает огромной значимости предельных обобщений. Он только утверждает, что эти предельные общности вовсе не образуют каких-нибудь самостоятельных и изолированных субстанций. Идеи и числа в этом смысле Аристотель трактует только в виде абстракции, полученной из обыкновенного чувственного опыта.

Тут, однако, очень легко ошибиться и понять аристотелевскую абстракцию как нечто совсем никак не существующее. Наоборот, Аристотель этой абстракции придает огромное значение и характеризует ее как бытие потенциальное. Но потенциальное, по Аристотелю, есть тоже особого рода бытие, хотя пока еще только смысловое, предназначенное для того, чтобы осмысливать всю реальную действительность. Числа и есть такие абстракции, без которых не могут существовать никакие реальные вещи. А поскольку эти абстракции несут с собой обобщение, без них невозможна была бы и никакая наука, в которой обобщение играет первую роль.

В нашей специальной работе по этому вопросу{4} мы установили, что общая система соотношения разных слоев бытия у Платона и Аристотеля одна и та же. Ни Платон не отрицает необходимости изучать единичные вещи и делать на их основании общие выводы, ни Аристотель не отрицает общих идей и не запрещает переходить от них к чувственно-материальным единичностям. Но дело в том, что постоянная дистинктивно-дескриптивная склонность Аристотеля, конечно, заставляет его гораздо меньше анализировать общие категории, чем это было у Платона, так что субстанциальность этих общностей иной раз даже целиком отрицалась у него. Точнее говоря, Аристотель просто находился под влиянием своей формальной логики и не всегда понимал то простое диалектическое утверждение, что ни общего не существует без единичного, ни единичного без общего. Никаких общностей он не отрицает, но относится к ним описательно, а не диалектически-объяснительно. Поэтому можно объяснить только излишней увлеченностью то, что общее и единичное переставали быть для него равносильными категориями. И эта увлеченность настолько была у Аристотеля сильна, что пифагорейские числовые конструкции он прямо высмеивал как нечто наивное и фантастическое.

Основные материалы по вопросу об отношении аристотелевского и платоновского учений о числе содержатся в XIII и XIV книгах "Метафизики". Из XIII книги мы укажем: на 2 главу с доказательством того, что числа не образуют собой ни чувственной, ни сверхчувственной действительности, но среднее между тем и другим; на 3 главу с указанием необычайной важности этого среднего положения числа для понимания и осмысления вещей и их красоты. Из XIV книги укажем на 1 и 2 главы с критикой пифагорейско-платонического конструирования всякого числа на основании монады и неопределенной диады, а также на 6 главу с доказательством невозможности понимать числа как причины вещей. Обе эти книги "Метафизики" пересыпаны разными доказательствами несубстанциальности чисел. Но все эти доказательства основаны на понимании платонической числовой субстанциальности в слишком грубом и вещественном смысле, чего Платон вовсе не думал. Аристотель плохо разбирается в том, что сам он является только продолжателем платоновского учения о числах, поскольку он все-таки оставляет за ними очень тонкое смысловое функционирование. Но прогресс у Аристотеля все-таки был, поскольку Аристотель умел мастерски характеризовать то, что он называл потенциальной природой числа и что мы теперь могли бы назвать осмысливающей и оформляющей природой числа. Аристотеля интересует порождающая роль чисел, которая у Платона, конечно, мыслится на втором плане в сравнении с вечной, предельно обобщенной и потому неподвижной природой чисел.


§4. Ранний эллинизм


1. Назревание принципа континуально-сущностной эманации у философов разных периодов классики

Об этом назревании необходимо, сказать несколько слов потому, что эманация будет играть огромную роль в позднем эллинизме, то есть в неоплатонизме, а в позднем эллинизме как раз и будет сформулировано последнее и окончательное античное представление о числе.

а) Собственно говоря, уже в знаменитых парадоксах Зенона содержится открытый протест против дробления непрерывной величины на отдельные изолированные части. Ахилл потому не может догнать черепахи, что проходимый им путь, как и путь, проходимый черепахой, все время дробится на меньшие и меньшие отрезки. И так как расстояние между отдельными точками положений Ахилла и черепахи, как бы оно ни было мало, никогда не может стать нулем, то и получается, что Ахилл в конце своего известного продвижения никогда не может оказаться в той же самой точке, в которой находится в этот момент черепаха. Зенон думает, что любое расстояние на прямой есть нечто абсолютно единое, то есть абсолютно нераздельное и непредставимое в виде отдельных точек. Континуум нельзя составить из отдельных различных точек. Парменид вполне определенно понимает свое единое, или "бытие", вовсе не как изолированную ото всего сущность, но то, что вполне раздельно и в этом раздельном остается одним и тем же. Другими словами, это не просто единое, но еще и непрерывное. Любопытно, что самый этот термин "непрерывное" (syneches) употребляется в поэме Парменида несколько раз (B 8, 6. 25). Мелисс (B 7=I 270, 15 - 16) тоже называет элейское единое "вечным", "беспредельным" и "совершенно однородным". Термины эти тоже указывают вовсе не на исключение всякой раздельности и разнокачественности, но только на одинаковое присутствие единого и бытия во всем раздельном и разнокачественном. То же и в других текстах Мелисса (A 5=I 260, 9 - 14).

Таким образом, уже элейцы учили о континуальном становлении, то есть о таком текуче-сущностном становлении, которое лишено всякой раздельности (ИАЭ I 331 - 334, 338 - 339).

б) Можно сказать, что античность никогда не расставалась с двумя идеями: бесконечная делимость, постепенно переходящая в сплошное и чистое становление, близкое к нулю и потому граничащее с отсутствием всякой делимости и с превращением этой делимости в сплошную и неделимую текучесть; с другой стороны, все существующее для античного мышления всегда было чем-то раздельным, единораздельным целым, структурой, ясно очерченным кристаллом, фигурой и скульптурно оформленным целым, или телом. Совмещение этих двух идей было, можно сказать, основным и заветным намерением греческих философов. И если у элейцев неделимость брала верх, то у Анаксагора мы находим замечательную попытку совместить то и другое. В этом смысле мы и давали раньше (ИАЭ I 320 - 323) характеристику анаксагоровского учения о гомеомериях.

По Анаксагору, все делимо до бесконечности, то есть деление доходит до величин, едва отличных от нуля. С другой стороны, однако, эта стремящаяся к нулю делимость не превращается у Анаксагора в сплошной туман или в пыль, не превращается в непознаваемую мглу. Каждое качество, испытывающее бесконечную делимость, остается у Анаксагора раз и навсегда самим собою. Оно в основе своей уже неделимо. Мало того. Каждое качество содержит в себе всю бесконечность качеств, но каждый раз со своей собственной структурой этой бесконечности. Но и эта структурно определенное качество, взятое само по себе, в свою очередь тоже делимо до бесконечности.

Таким образом, по Анаксагору, все на свете погружено в вечное становление, поскольку оно бесконечно делимо; а с другой стороны, все на свете везде и всюду является неподвижным целым, вечно сохраняющим свою отчетливую фигурность. И эта фигурность, доходящая в своей делимости до какой угодно малой величины, не расплывается до полного своего уничтожения, а, наоборот, остается тем целым, к которому его части могут приближаться как угодно близко. После этого неудивительно, что один немецкий ученый понял учение Анаксагора о гомеомериях как открытие теории бесконечно малых{5}.

И вообще, учение Анаксагора очень часто излагается в слишком элементарной и чересчур примитивной форме. Все знают, например, что, по Анаксагору, вначале имеется хаос отдельных частиц, а уже потом ум приступает к оформлению этого хаоса и к превращению его в космос. Но при этом забывают, что никаких малых частей, которые представляли бы собою как-нибудь оформленное целое, по Анаксагору, вовсе не существует. Каждая малая часть, по Анаксагору, может стать еще более малой, и это уменьшение никогда не может довести ее до нуля. По Симплицию, Анаксагор (59 B 3) прямо говорил: "В началах нет ни наименьшего, ни наибольшего... Ибо если все во всем и все из всего выделяется, то и из того, что кажется наименьшим, выделится нечто меньше его, и то, что кажется наибольшим, выделилось из чего-то большего, чем оно". В том же фрагменте читаем: "И в малом ведь нет наименьшего, но всегда есть еще меньшее. Ибо бытие не может разрешиться в небытие". Также не может существовать и такого абсолютно большого, в отношении чего не существовало бы ничего еще большего (A 45=II 18, 8 - 10). Поэтому если Анаксагор учит, что вначале все вещи были вместе, то есть что вначале был хаос вещей, то это нужно понимать не в том смысле, что каждый такой элемент был какой-то определенной конечной величиной, он не был просто конечной величиной, но такой, которая могла бы стать меньше любой заданной величины. Наличие инфинитезимальной интуиции здесь вполне очевидно.

в) Точно так же уже Демокрит, как это установлено в современной науке, вовсе не понимал свои атомы как в полном смысле неделимые величины. Атомы - это только отдельные пункты постепенного уменьшения любой величины. Они являются каждый раз пределом для уменьшения больших величин и началом дальнейшего уменьшения, причем это уменьшение никогда не может достигнуть нуля. Здесь мы по необходимости выражаемся кратко, и желающих узнать подробности современных представлений об античном атоме с точки зрения бесконечно малых мы относим к нашему специальному исследованию (ИАЭ I 441 - 443). А.О.Маковельский{6} подобрал все фрагменты из Демокрита, относящиеся к математике. Из этих фрагментов видно, что если, например, конус пересечь плоскостями, параллельными его основанию, то при равных сечениях получается не конус, а цилиндр, а при неравных сечениях образующая конуса не будет прямой линией, а будет ломаной, состоящей из какого угодно количества отрезков. Другими словами, без признания взаимного непрерывного перехода точек на образующей никак нельзя получить самой этой образующей в цельном виде, то есть в виде прямой. В таких случаях Демокрит, очевидно, взывает к признанию континуально-сущностной непрерывности. Неделимость атома у Демокрита является, собственно говоря, невозможностью представлять отдельные точки непрерывного процесса в виде изолированных остановок на путях континуального становления (в частности, уменьшения). Атом неделим потому, что он несет на себе все становление целиком{7}.

Между прочим, среди материалов Демокрита имеется один странный текст, который, как он ни странен, все-таки решительно говорит о наличии момента непрерывности в такой, казалось бы, дискретной картине мира, как античный атомизм. Именно, мы читаем (59 A 45=II 18, 1 - 3 Лурье 237): "Все те, которые принимают бесконечное множество элементов, как Анаксагор и Демокрит... говорят, что бесконечное непрерывно касанием". Этот термин "касание" (harhe) уже в древности вызывал многочисленные споры, которых мы здесь касаться не будем и которые приводит С.Я.Лурье в своем издании Демокрита{8}. Не касаясь подробностей, можно сказать, что понимать этот термин можно либо как максимальное приближение одного к другому, либо как слияние одного и другого с исчезновением границы между ними. Собственно говоря, в указанном тексте то и другое понимание касания вполне возможно и относительно Анаксагора и относительно Демокрита.

Если речь идет о максимально близком касании, то, очевидно, здесь мы имеем вполне определенный намек на использование принципа бесконечно малого приближения. И в отношении атомов Демокрита это необходимо признать потому, что, согласно общему учению Демокрита, атомы не могут соприкасаться. Но другое понимание касания тоже возможно. И это будет в согласии с учением Демокрита о неделимости атома, то есть о слиянии составляющих его частей в одно непрерывное целое. При этом любопытно то, что атом, в сущности говоря, вовсе не характеризуется какой-нибудь величиной, потому что весь мир тоже есть атом (Демокрит A 47). Получается, таким образом, что непрерывность имеет у Демокрита универсальное значение и характерна для всего космоса, как и у Гераклита.

Самое же главное то, что приведенный текст гласит не только о Демокрите, но и об Анаксагоре. Здесь сама собой напрашивается следующая схема. Именно, если у элейцев на первый план выдвигается непрерывность и все прерывное, оставаясь прерывным, несет на себе печать непрерывного бытия, то у Демокрита - наоборот: если у атомистов на первый план выдвигаются прерывные атомы, то непрерывность внутри самих же этих атомов, хотя она и остается всюду непрерывной, все же несет на себе печать атомистической прерывности. Что же касается Анаксагора, то он явно занимает среднее место между элейцами и Демокритом: каждая гомеомерия делима, поскольку содержит в себе всю бесконечность элементов, и вполне неделима, то есть вполне непрерывна, поскольку руководящим и оформляющим принципом каждой гомеомерии является какой-нибудь один элемент, то есть одно качество, одинаково и непрерывно присутствующее во всех вторичных элементах, составляющих гомеомерию. Другими словами, так или иначе, но континуально-непрерывный принцип есть то, с чем никогда не расставалась античная философия.

г) Нам хотелось бы только внести здесь уточнение, без которого инфинитезимальное понимание античного атомизма оказывается самой невероятной модернизацией.

С.Я.Лурье в своей очень интересной и ученой книге (эта книга была названа у нас выше), прекрасно понимая, что все существующее делимо до бесконечности, приписывает Демокриту такой взгляд, что атом вполне делим до бесконечности, если этот атом понимать физически, и совершенно неделим, если его понимать математически. Однако этот автор забывает, что и всякая вообще вещь, поскольку она есть нечто, тоже неделима: дом можно перестраивать сколько угодно, но он есть все-таки нечто одно на такой-то улице, и с таким-то номером, и принадлежащее такому-то владельцу. Можно прямо сказать, что Демокрит вовсе не в этом смысле говорил о неделимости атомов. Атом действительно неделим, как и всякая вещь вообще. Но Демокрит понимает его как результат дробления вещи. Поэтому он неделим в смысле того предела, к которому стремится уменьшающаяся вещь. Физически он тоже делим, поскольку делимость всегда бесконечна. Но как идея, как смысл полученного результата деления, он вполне неделим. Вот это понятие предела и является свидетельством того, что атомисты обязательно мыслили бесконечное деление вещей, но с сохранением каждого результата этого деления в качестве цельной неделимости. Любопытно, что и сам С.Я.Лурье вовсе не чужд понятия предела в обрисовке атомистической теории. Он пишет{9}: "И уже Демокриту должна была принадлежать своеобразная примитивная "теория пределов", дававшая возможность перебросить мост между формулами недоступного чувствам и формулами чувственного мира". Но можно только пожалеть, что С.Я.Лурье так мало разработал эту атомистическую теорию пределов. Правда, теория эта скорее является нашим выводом из теории Демокрита, чем прямой формулировкой первоисточников. Но как ни квалифицировать теорию пределов у греческих атомистов, она там все же была. И потому можно считать вполне доказанным наличие у греческих атомистов принципа непрерывного и сплошного, континуального становления, несмотря на четкую, единораздельную и геометрическую фигурность атома.

Такое понимание инфинитезимализма было проведено нами выше в своем месте (ИАЭ I 435 - 436). В изложении С.Я.Лурье очень трудно добиться ясного представления о том, что такое античный атом. Но, повторяем, в книге этого автора очень много ценных, хотя и разбросанных, античных текстов, говорящих на тему о континуальном становлении как и о приближении переменной величины к ее пределу. Таковы, например, важные тексты, углубляющие наше представление об Архимеде, Евклиде и Евдоксе{10}.

В итоге необходимо признать, что инфинитезимальная значимость античного атома вполне доказана в нашей современной науке о греческих атомистах. Мы только настаиваем на том, что без понятия предела античный атом является малопонятным и исторически ненужным понятием. Больше того. Поскольку у Демокрита мы не находим никаких точных определений и никаких формул, то весь античный атомизм можно считать только отдаленной мечтой и отдаленным пророчеством новоевропейского учения о бесконечно малых. А если это так, то античный атом можно считать даже некоторого рода интегралом, поскольку этот атом есть не что иное, как предел суммы бесконечно малых приращений (или уменьшений).

С.Я.Лурье, затративший столько времени на поиски теории бесконечно малых у греческих атомистов, удивительным образом совершенно обходится без понятия предела. И метод исчерпывания у Евдокса, и метод исчерпывания у Евклида и Архимеда{11} С.Я.Лурье ухитряется излагать без всякого намека на теорию предела.

Поэтому не только основной труд С.Я.Лурье, о котором мы говорили выше, но и его книга об Архимеде страдает одним принципиальным недостатком, а именно неясностью конечных выводов. Интересно, что у С.Я.Лурье имеется даже целая глава, проводящая аналогию с нашей современной математикой и, в частности, с учением о кратных интегралах. Но, во-первых, здесь тоже нет ни слова ни о пределе суммы бесконечно малых приращений, ни вообще о пределе. Во-вторых, сам же С.Я.Лурье аннулирует свою аналогию атома Демокрита с двукратным интегралом следующими словами: "Но эта аналогия не полная и не очень плодотворная"{12}. У С.Я.Лурье имеется также целая глава о значении Архимеда в истории математики{13}.

Но в этой главе излагаются взгляды многочисленных ученых, древних и новых, по этому вопросу; а как сам автор расценивает это значение, остается неизвестным.

Наконец, относительно понятия предела нельзя возражать указанием на отсутствие соответствующего термина у Евдокса, Демокрита, Евклида или Архимеда. Ведь термин "бесконечно малое" тоже отсутствует у этих мыслителей.

И тем не менее С.Я.Лурье считает должным ввести этот термин даже в заглавие своей книги. Нужно твердо помнить, что все эти инфинитезимальные представления вовсе не содержатся у названных мыслителей буквально. Их мы домысливаем только сами же, чтобы уяснить сущность дела. Если же угодно гоняться даже и за терминами, то тогда придется считать основателем античного инфинитезимализма вовсе не этих мыслителей, но Платона.

д) Подлинным основателем учения о бесконечно малых и о континууме является Платон, который сейчас и будет нами обсуждаться. Но справедливость заставляет сказать, что было еще одно имя периода Сократа и Платона, с которым необходимо связывать раннюю и не философскую, не критическую, а еще только чисто фактическую эпоху античного учения о континуальном приближении к пределу. Именно, был софист Антифонт, который, между прочим, выступает у Ксенофонта среди собеседников Сократа. У этого Антифонта, как гласят очевиднейшие источники (B 13D), прямо имеется рассуждение о совпадении с окружностью круга, вписанного в этот круг многоугольника при достаточно большом увеличении числа его сторон. Едва ли тут было какое-нибудь философское обоснование учения о бесконечно малых. Вероятно, это было у Антифонта покамест еще примитивным и только чисто математическим соображением. Чисто философская проблема в этой области в отчетливой форме ставится только у Платона.