Н. Г. Сычев Основы энергосбережения Учебное пособие

Вид материалаУчебное пособие

Содержание


1.8. 5. Условное топливо
2. Общая характеристика топливно-энергетического комплекса республики беларусь
2. 1. 2. Конденсационные электростанции
Паровой котел.
2.1. 3. Теплоэлектроцентрали
Подобный материал:
1   2   3   4   5   6   7   8   9   10   11

1.8. 5. Условное топливо


Различные виды энергетических ресурсов обладают разным качеством, которое характеризуется энергоемкостью топлива. Удельной энергоемкостью называется количество энергии, приходящееся на единицу массы физического тела энергоресурса.

Для удобства сопоставления различных видов энергоресурсов и возможности расчетов расход всех видов топлива, а также планирования необходимо проводить сравнение на единой базе. За единую базу принято так называемое условное топливо (У.Т.).

За условное принято такое топливо, при сгорании 1 кг которого выделяется 29,3 МДж энергии, или 7000 ккал тепла. В табл.1.3 приведены значения удельной энергоемкости для ряда энергетических ресурсов в сравнении с условным топливом. В качестве единицы измерения в государствах СНГ принята 1 тонна условного топлива (Т У.Т.). За рубежом применяется идентичная по сути и функциональному назначению единица измерения – тонна условного топлива в нефтяном эквиваленте или проще тонна нефтяного эквивалента (т.н.э.), 1 т н.э. = 41,86 МДж.

Анализ разведанных в мире запасов природных энергоресурсов показывает, что при существующих темпах развития экономики стран мира, нефти хватит на 40 лет, газа – на 60лет, угля – на 250 лет, урана – на 80 лет. Торфяные месторождения и запасы торфа, учитывая его невысокую калорийность, практически не изменяют энергетический потенциал Земли. Поэтому необходимо максимально использовать возобновляемые энергоресурсы (солнце, ветер, биотопливо, движение воды в реках, морях и океанах), разрабатывать экономически рациональные технологии водородной энергетики и термоядерного синтеза.


Таблица 1.3. Значения удельной теплоты сгорания (энергоемкости) основных видов топлива.

Удельная теплота и энергия сгорания

Древесина

Торф

Бурый уголь

Сланцы

Каменный уголь

Антрацит


Кокс

Бензин

Керосин

Дизельное топливо

Мазут

Природный газ

Сжиженный газ

Ккал/кг

2 960

2900

3100

2300

6450

6700

7000

10500

10400

10300

9700

8000

10800

кДж/кг

12400

12100

13000

9600

27000

28000

29300

44000

43500

43000

40600

33500

45200



2. ОБЩАЯ ХАРАКТЕРИСТИКА ТОПЛИВНО-ЭНЕРГЕТИЧЕСКОГО КОМПЛЕКСА РЕСПУБЛИКИ БЕЛАРУСЬ

Топливно-энергетический комплекс (ТЭК) является важ­нейшей структурной составляющей народного хозяйства Рес­публики Беларусь в обеспечении функционирования экономи­ки и повышения уровня жизни населения. ТЭК включает сис­темы добычи, транспорта, хранения, производства и распреде­ления всех видов энергоносителей: газа, нефти и продуктов ее переработки, твердых видов топлива, электрической и тепло­вой энергии. Отрасли комплекса занимают значительное мес­то в народном хозяйстве республики. На них приходится 26 % капитальных вложений в промышленность, почти пятая часть основных производственных фондов, 14 % валовой про­дукции промышленности отрасли. Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.


2.1. Традиционные способы получения электроэнергии.

2.1.1. Классификация электрических станций.

Электрической станцией называется комплекс оборудования и устройств, основным назначением которого является преобразование используемого источника энергии в электрическую, т. е. выработка электроэнергии для снабжения ею промышленного и сельскохозяйственного производства, коммунального хозяйства и транспорта. Электростанции, использующие в качестве источника энергии различные виды топлива (включая атомное), могут вырабатывать одновременно и тепловую энергию, используемую для целей теплоснабжения производственных предприятий, административных и жилых зданий и т. п.

Электрические станции делятся по следующим признакам.

1. По виду используемого источника энергии:
  • тепловые электростанции (ТЭС), использующие органическое топливо;
  • гидроэнергетические установки (ГЭУ), включающие в себя гидроэлектростанции (ГЭС), приливные электростанции (ПЭС), гидроаккумулирующие электростанции (ГАЭС) и другие электростанции, использующие кинематическую энергию различных водотоков;
  • атомные электростанции (АЭС), в которых используется ядерное топливо
  • электростанции, использующие нетрадиционные источники энергии(ветроэнергетические установки-ВЭУ, солнечные энергетические установки и др.).

2. По виду вырабатываемой энергии:
  • тепловые электростанции, вырабатывающие только электроэнергию,— конденсационные электростанции (КЭС);
  • тепловые электростанции, вырабатывающие электрическую и тепловую энергию,— теплоэлектроцентрали (ТЭЦ).

3. По виду теплового двигателя:
  • электростанции с паровыми турбинами — паротурбинные ТЭС и АЭС;
  • электростанции с газовыми турбинами — газотурбинные ТЭС;
  • электростанции с парогазовыми установками — парогазовые ТЭС;
  • электростанции с двигателями внутреннего сгорания — ДЭС.

4. По назначению электростанций:
  • электростанции (общего пользования), обслуживающие все виды потребителей электроэнергии и являющиеся самостоятельными производственными предприятиями, входящими в систему Минэнерго РБ, по этому признаку районные конденсационные электростанции носят название государственных районных электростанций (ГРЭС);
  • промышленные электростанции, входящие в состав производственных предприятий (объединений) и предназначенные в основном для энергоснабжения предприятий, а также прилегающих к ним городских и сельских районов.

Для каждого типа станции разрабатывается своя технологическая схема превращения используемой первичной энергии в электрическую, а для ТЭЦ — и в тепловую. Технологическая схема определяет последовательность процесса производства электрической и тепловой энергии и оснащение его необходимым основным оборудованием (паровыми котлами, атомными реакторами, паровыми, газовыми или гидравлическими турбинами, электрическими генераторами), а также разнообразным вспомогательным оборудованием. Технологическая схема предусматривает необходимую механизацию и автоматизацию процесса. Процесс производства электроэнергии на всех видах ТЭС можно разделить на три цикла:

химический ─ происходит преобразование химической энергии, содержащейся в топливе, в процессе горения в топке парового котла, в тепловую энергию перегретого пара;

механический ─ перегретый пар подается на паровую турбину, где и происходит преобразование тепловой энергии в механическую энергию вращения ротора турбины;

электрический ─ механическая энергия вращения ротора турбины передается на ротор электрического генератора, который и вырабатывает электрическую энергию.


2. 1. 2. Конденсационные электростанции

Конденсационные электростанции (КЭС) — тепловые паротурбинные электростанции, предназначенные для выработки электрической энергии.





Рис. 2.1. Принципиальная технологическая схема конденсационной электростанции, работающей на твердом топливе


Топливо, поступающее на электростанцию, проходит предварительную обработку. Так, наиболее часто используемое на ТЭС твердое топливо (уголь) сначала дробится, а затем подсушивается и на специальных мельничных установках размельчается до пылевидного состояния. Комплекс устройств, предназначенных для разгрузки, хранения и предварительной обработки топлива, составляет топливное хозяйство или топливоподачу. Топливоподача 1 и пылеприготовление 2 образуют топливный тракт КЭС на рис. 2.1.).

Угольная пыль вместе с воздушным потоком, создаваемым специальным насосом (воздуходувкой), подается в топку котла 3. Продукты сгорания топлива проходят через специальные очистительные сооружения 7 (золоуловители), где выделяются зола и другие примеси (при сжигании нефти и газа золоуловители не требуются), а оставшиеся газы с помощью дымососа 6 через дымовую трубу 8 выбрасываются в атмосферу.

Теплота, получаемая при сжигании топлива в котле, используется для получения пара, который перегревается в пароперегревателе 4 и по паропроводу 9 поступает в паровую турбину 10. В турбине энергия пара преобразуется в механическую работу вращения ее вала, который специальной муфтой соединен с валом генератора 13, вырабатывающим электроэнергию. Отработавший в турбине пар после своего расширения от начального давления при входе в турбину 13—24 МПа до конечного (на выходе) 0,0035—0,0045 МПа поступает в специальный аппарат 11, называемый конденсатором. В конденсаторе пар превращается в воду (конденсат), которая насосом 12 подается обратно в котел, и цикл в пароводяном тракте на рис. 2.1.) повторяется. Для охлаждения пара в конденсаторе используется вода, забираемая циркуляционным насосом 14 из водоема 17.

Таков общий принцип действия КЭС. На такой электростанции в процессе преобразования энергии неизбежны ее потери. Тепловой баланс, представленный на рис. 2.2., дает общее представление об этих потерях.




Рис. 2.2. Тепловой баланс конденсационной электростанции


Совершенство КЭС (ТЭС) определяется ее коэффициент полезного действия (КПД) агрегатов станции. КПД станции без учета расходов энергии на собственные нужды, например привод электродвигателей вспомогательных агрегатов, называется КПД брутто и имеет вид

ηбр = [ Эвыр / (G ▪ Qr )] ▪ 100% ,

где: Эвыр ─ количество выработанной генератором электроэнергии, кДж;

G ─ расход топлива за это же время, кг;

Qr ─ теплота сгорания топлива, кДж/кг.

Коэффициент полезного действия (КПД) современных крупных блочных КЭС не превышает обычно 35%.

Основными элементами ТЭС являются:

Паровой котел. Это сложное техническое сооружение, предназначенное для получения (генерации) пара заданных по давлению и температуре параметров из поступающей в него питательной воды. По конструктивным признакам паровые котлы подразделяются на барабанные и прямоточные.

Упрощенная схема прямоточного котла, приведена на рис. 2.3. Циркуляция воды и пара создается насосами. Конструктивно такой котел состоит из ряда параллельно включенных витков стальных труб, в которые через экономайзер 1 поступает питательная вода. Сначала эта вода поступает в нижнюю часть экранов (витков труб) 2. Здесь она нагревается и, поднимаясь, испаряется, постепенно утрачивая свойства капельной жидкости. В верхней части экранов 3 осуществляется начальный перегрев пара, после чего он поступает в пароперегреватель 4 и далее по паропроводам в турбину. В воздухоподогревателе 5 воздух подогревается перед подачей его в топку, (давление пара свыше 22 МПа).





Рис. 2.3. Упрощенная схема прямоточного парового котла.


Паровая турбина. Паровой турбиной называют тепловой двигатель, преобразующий потенциальную энергию пара сначала в кинетическую энергию, а затем в механическую работу на валу. Преобразование энергии в турбине происходит в два этапа (рис. 2.4.).

На первом этапе пар из паропровода поступает в неподвижное сопло 1 (может быть группа параллельных сопл, образующих так называемую сопловую решетку), где он расширяется и, следовательно, ускоряется в своем движении в направлении вращения рабочих лопаток. Другими словами, пар, проходящий по соплу, теряет свою тепловую энергию (температура и давление снижаются) и повышает кинетическую (скорость увеличивается). После сопл поток пара попадает в каналы, образованные рабочими лопатками 2, закрепленными на диске 3 и жестко соединенными с вращающимся валом 4. Здесь происходит второй этап преобразования энергии: кинетическая энергия потока превращается в механическую работу вращения ротора турбины (вала с дисками и лопатками).

В зазоре между сопловой и рабочей решетками давление пара не изменяется, оно изменяется в рабочих лопатках.



Рис. 2.4. Схема ступени турбины


Совокупность соплового и лопаточного аппаратов носит название турбинной ступени. Конструктивно турбины выполняются как одноступенчатыми так и многоступенчатыми (рис.2.5.). В последнем случае неподвижные сопловые решетки чередуются с рабочими.

Все крупные турбины делают многоступенчатыми. На рис. 2.5. показана схема активной многоступенчатой турбины, которая включает несколько последовательно расположенных по ходу пара ступеней, сидящих на одном валу. Ступени отделены друг от друга диафрагмами, в которые встроены сопла. В таких турбинах давление падает при проходе пара через сопла и остается постоянным на рабочих лопатках. Абсолютная скорость пара в ступени, называемой ступенью давления, то возрастает — в соплах,



Рис. 2.5. Схема активной турбины с тремя ступенями давления:

1 — сопло; 2 — входной патрубок; 3 — рабочая лопатка 1 ступени; 4 — сопло; 5 — рабочая лопатка 2 ступени; 6 — сопло; 7 — рабочая лопатка 3 ступени; 8 — выхлопной патрубок; 9 — диафрагмы


то снижается — на рабочих лопатках. Так как объем пара по мере его расширения увеличивается, то геометрические размеры проточной части по ходу пара возрастают.

Генератор предназначен для преобразования механического движения (вращения вала турбины) в электрический ток. Электрический ток бывает постоянным и переменным. Но широко




Рис. 2.6. Простейшая установка для выработки переменного электрического тока

применяется переменный ток. Это обусловлено тем, что напряжение и силу переменного тока можно преобразовывать практически без потерь энергии. Переменный ток получают при помощи генераторов переменного тока с использованием явлений электромагнитной индукции. На рис. 2.6. изображена принципиальная схема установка для выработки переменного тока.

Принцип действия установки прост. Проволочная рамка вращается в однородном магнитном поле с постоянной скоростью. Своими концами рамка закреплена на кольцах, вращающихся вместе с ней. К кольцам плотно прилегают пружины, играющие роль контактов. Через поверхность рамки непрерывно будет протекать изменяющийся магнитный поток, но поток, создаваемый электромагнитом, останется постоянным. В связи с этим в рамке возникнет ЭДС индукции.

В мировой промышленной практике широко распространен трехфазный переменный ток, который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными ЭДС с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода.

Конденсатор. Экономичность работы паровой турбины в большой степени зависит от конечного давления пара, с понижением которого увеличивается используемый тепловой перепад и возрастает КПД турбоустановки. Можно сказать, что из трех параметров пара, определяющих экономичность турбины,— начального давления, начальной температуры и конечного давления — последний параметр оказывает наибольшее влияние на КПД турбины.




Рис. 2.7. Схема конденсатора.


Снижение давления пара после выхода его из турбины осуществляется с помощью устройства, называемого конденсатором, в котором поддерживается низкое абсолютное давление, равное 0,005-0,0035 МПа.

В простейшем случае конденсатор представляет собой цилиндрический корпус с большим числом трубок, закрытый с торцов (рис. 2.7.). Охлаждающая вода поступает через патрубок 1, пройдя по трубкам 2 и нагревшись, она покидает конденсатор через патрубок 3. Пар поступает через патрубок 4, заполняя межтрубное пространство внутри корпуса, соприкасается с холодной наружной поверхностью трубок и конденсируется. Конденсат специальным насосом откачивается через патрубок 5.

Температура охлаждающей воды на входе в конденсатор обычно 12—20° С, на выходе из него 30—35° С. Таким температурам конденсации соответствует глубокий вакуум (0,0035—0,0045 МПа).

Для обеспечения вакуума воздух из конденсатора откачивается с помощью вакуумного насоса через патрубок 6.

Количество охлаждающей воды для выработки 1 кВт-ч электроэнергии современной мощной конденсационной турбиной составляет от 0,12 до 0,16 м3, тогда как для КЭС установленной мощностью 1000 МВт среднегодовой расход воды будет равен не менее 20 м3/с. Это немногим меньше, чем, например, летний расход подмосковной р. Пахры близ железнодорожной станции «Ленинская». Нетрудно увидеть, что для технических нужд КЭС мощностью 2000—3000 МВт требуется «солидная» река. Поэтому строительство мощных КЭС возможно лишь вблизи крупных водоемов.


2.1. 3. Теплоэлектроцентрали

К теплоэлектроцентралям (ТЭЦ) относятся электростанции, которые вырабатывают и отпускают потребителям не только электрическую, но и тепловую энергию. При этом в качестве теплоносителей служат пар из промежуточных отборов турбины, частично уже использованный в первых ступенях расширения турбины для выработки электроэнергии, а также горячая вода с температурой 100—150° С, нагреваемая отбираемым из турбины паром.

Технологическая схема ТЭЦ отличается от схемы КЭС лишь наличием промежуточных отборов пара из турбины на отопительные и технологические нужды.

Пар из парового котла поступает по паропроводу в турбину 1 (Рис.2.8.), где он расширяется до давления в конденсаторе и потенциальная энергия его преобразуется в механическую работу вращения ротора турбины 2 и соединенного с ним ротора генератора 3. Часть пара после нескольких ступеней расширения отбирается из турбины и направляется по паропроводу потребителю пара 7. Место отбора пара, а значит, и его параметры устанавливаются с учетом требований потребителя.

При этом чем выше требуемое давление, тем меньше число ступеней турбин до места отбора, т. е. тем меньшее количество электроэнергии вырабатывает каждый килограмм отобранного пара.

В современных турбинах предусматривается несколько мест отбора пара. Пар наиболее низких параметров используется для получения горячей воды. Такой пар по паропроводу поступает в сетевой подогреватель- теплообменник 7. Горячая вода, идущая на нужды теплоснабжения, циркулирует между сетевым подогревателем и потребителем по замкнутому контуру при помощи сетевого насоса. Система трубопроводов, обеспечивающих подачу воды от ТЭЦ потребителям и возврат охлажденной воды на ТЭЦ, носит название тепловой сети.

Централизованное снабжение потребителей тепловой энергией, полученной от отработавшего в турбине пара при производстве электрической энергии, является основой современной теплофикации.

Таким образом, из принципа действия ТЭЦ следует, что до ее конденсатора доходит только небольшое количество пара. Поэтому и потери теплоты с охлаждающей конденсатор водой на таких станциях

Рис. 2.8. Принципиальная схема ТЭЦ, снабжающей потребителей горячей водой: 1. ─ паровой котел; 2. ─ паровая турбина; 3. ─ электрогенератор; 4. ─ конденсатор; 5. ─ питательный бак; 7 ─ подогреватель-теплообменник.


значительно меньше, чем на конденсационных станциях, турбины которых не имеют отбора технологического пара, что, в конечном счете, приводит к более высоким тепловым и энергетическим показателям ТЭЦ.

В настоящее время разработаны и эксплуатируются теплофикационные энергоблоки мощностью 250 МВт на сверхкритических параметрах пара. Намечено также увеличение единичных мощностей теплофикационных турбин до 600 МВт.

Так как теплота на ТЭЦ расходуется на производство электрической и тепловой энергии, то различаются КПД ТЭЦ по производству и отпуску электрической энергии и по производству и отпуску тепловой энергии. Однако для совместной оценки экономической эффективности обоих процессов используется полный (общий) КПД ТЭЦ, который характеризует степень использования теплоты, расходуемой на производство обоих видов энергии одновременно. Значение этого КПД для ТЭЦ, снабженных турбинами с конденсацией и отборами пара, составляет около 60%, а для ТЭЦ, использующих турбины с противодавлением,— 75%.