Методические указания по изучению теоретической части Чебоксары 2009 г
Вид материала | Методические указания |
- Методические указания по изучению теоретической части Чебоксары 2009, 3100.34kb.
- Методические указания по изучению теоретической части Чебоксары 2009, 70.73kb.
- Методические указания по изучению дисциплины и задание для контрольной работы для студентов-заочников, 328.95kb.
- Методические рекомендации по выполнению теоретической части курсовой работы по статистике, 84.82kb.
- А. В. Лагерев " " 2009 г. Материаловедение методические указания, 195.92kb.
- Методические указания по изучению курса «теория организации», 534.25kb.
- Методические указания по изучению дисциплины и выполнению контрольной работы Для студентов, 469.05kb.
- Методические указания по изучению дисциплины для студентов по специальности 110201, 426.82kb.
- Методические указания по изучению курса, планы семинарских занятий, тематики, 863.53kb.
- Методические указания по изучению дисциплины, 198.14kb.
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ЧУВАШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
им. И. Н. УЛЬЯНОВА
Технический институт
факультет Дизайна и компьютерных технологий
Кафедра компьютерных технологий
Основы теории защиты информации
Методические указания
по изучению теоретической части
Чебоксары 2009 г.
№ | Раздел дисциплины | Основные понятия, определения и соотношения | Страницы учебника [36] | Прим. |
1 | Эволюция технологии обеспечения безопасности передачи информации. Основные определения и классификация методов и средств обеспечения безопасности передачи информации. Основные концепции криптографии. |
| 4-8 | |
2 | Шифрование данных и проблема аутентификации информации. Теоретическая и практическая стойкость криптографических алгоритмов. Методы криптографической защиты информации. Общая характеристика угроз, служб и механизмов безопасности. Угрозы безопасности. Службы безопасности. Механизмы безопасности. Компьютерные вирусы и вопросы их нейтрализации. |
| 9-10 | |
3 | История криптологии. Классификация методов шифрования информации. Шифры замены. Шифры перестановки. Блочные составные шифры. |
| 11-16 | |
4 | Абсолютно стойкий шифр. Гаммирование. Поточные шифры. Синхронное поточное шифрование. Поточные шифры. Самосинхронизирующееся поточное шифрование. ГПК в задачах поточного и кобинированного шифрования. Оценка качества ГПК. |
| 17-20 | |
5 | Модель симметричной криптосистемы. Классификация угроз противника. Основные свойства криптосистемы. Классификация атак на криптосистему с секретным ключом. |
| 34-44 | |
6 | Криптосистема DES. Режимы использования блочных шифров. Отечественный стандарт криптографической защиты ГОСТ. |
| 45-50 | |
7 | Криптостстемы с открытым ключом. Односторонние функции. Модель криптосистемы с открытым ключом. |
| 51-75 | |
8 | Открытое распределение ключей. Электронная подпись. |
| 90-129 | |
9 | Криптосистема RSA. Гибридые криптосистемы. Криптографические протоколы. Основные понятия. |
| 189-200 | |
10 | Доказательства с нулевым разглашением. Протоколы подбрасывания монеты. Протоколы битовых обязательств. Протоколы разделения секрета. |
| 214-248 | |
11 | Аутентичность. Задача аутентификации информации. |
| 249-260 | |
12 | Имитозащита информации. Контроль целостности потока сообщений. |
| 313-320 | |
Литература
- Гостехкомиссия России. Руководящий документ. Концепция защиты СВТ и АС от НСД к информации Москва, 1992.
- Гостехкомиссия России. Руководящий документ. Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от НСД к информации Москва, 1992.
- Гостехкомиссия России. Руководящий документ. Автоматизированные системы. Защита от несанкционированного доступа к информации. Классификация автоматизированных систем и требования по защите информации Москва, 1992.
- Гостехкомиссия России. Руководящий документ. Временное положение по организации разработки, изготовления и эксплуатации программных и технических средств защиты информации от НСД в автоматизированных системах и средствах вычислительной техники Москва, 1992.
- Гостехкомиссия России. Руководящий документ. Защита от несанкционированного доступа к информации. Термины и определения Москва, 1992.
- Государственный Стандарт Российской Федерации "ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ. КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма" 1994г.
- Государственный Стандарт Российской Федерации "ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ. КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ. Функция хэширования" 1994г.
- Дж. Л. Месси. Введение в современную криптологию. // ТИИЭР, т.76, №5, Май 88 – М, Мир, 1988, с.24-42.
- 2. У. Диффи. Первые десять лет криптографии с открытым ключом. // ТИИЭР, т.76, №5, Май 88 – М, Мир, 1988, с.54-74.
- А. В. Спесивцев и др. Защита информации в персональных компьютерах. – М., Радио и связь. 1992, с.140-149.
- В. Жельников. Криптография от папируса до компьютера. – М., ABF, 1996.
- Акритас А. Основы компьютерной алгебры с приложениями. М.: Мир, 1994.
- Биркгоф Г., Барти Т. Современная прикладная алгебра. М.: Мир, 1976.
- Виноградов И.М. Основы теории чисел. М.: Наука, 1980.
- Глухое М.М.. Елизаров В.П.. Нечаев А.А. Алгебра. Ч. 1, 2. М., 1990-1991.
- Калужнин Л.А. Введение в общую алгебру. М.; Наука, 1973.
- Кострикин А.И. Введение в алгебру. М.: Наука, 1977.
- Куликов Л.Я. Алгебра и теория чисел. М.: Высшая школа, 1979.
- Курош А.Г. Курс высшей алгебры. М.: Наука, 1965.
- Скорняков Л.А. Элементы алгебры. М-; Наука, 1980.
- Фаддеев Д.К. Лекции по алгебре. М.: Наука, 1984.
- Андерсон Дж. Дискретная математика и комбинаторика. М.: Вильямс, 2003. – 960 с.
- Новиков Ф.А. Дискретная математика для программистов. – СПб.: Питер, 2004. – 302 с.
- Фомичев В.М. Дискретная математика и криптология. – М.: Диалог-МИФИ, 2003. – 400 с.
- Харин Ю.С. и др. Математические и компьютерные основы криптологии. - Новое знание, 2003. - 382 c.
- Шнайер Б. Прикладная криптография. – М.: Триумф, 2002. – 816 с.
- Алферов А.П. и др. Основы криптографии. Учебное пособие. М.: Гелиос, 2001. - 480 c.
- Введение в криптографию. /Под ред. В.В.Ященко. – СПб.: Питер, 2001. – 288 с.
- Аграновский А., Хади Р. Практическая криптография: алгоритмы и их программирование. Аспекты защиты. - Солон, 2003. - 256 c. + CD ROM.
- Бабаш А., Шанкин Г. Криптография. Аспекты защиты. - Солон-Р, 2002. - 512 c.
- Бернет С., Пэйн С. Криптография. Официальное руководство RSA Security. - Бином, 2002. - 384 c.
- Молдовян Н.А. и др. Криптографии: от примитивов к синтезу алгоритмов. – СПб.: БХВ, 2004. – 448 с.
- Молдовян А. и др. Криптография. Скоростные шрифты. - БХВ-СПб, 2002. - 496 c.
- Нечаев В.И. Элементы криптографии: Основы теории защиты информации. М., 1999.
- Масленников М. Практическая криптография. - BHV-СПб, 2003. - 464 c. + CD ROM
- Иванов М.А. Криптографические методы защиты информации в компьютерных системах и сетях. – КУДИЦ-ОБРАЗ, 2001. - 368 c.
- Столлингс В. Криптография и защита сетей. Принципы и практика. 2-е изд.. - Вильямс, 2001. - 672 c.
- Бернет С., Пэйн С. Криптография. Официальное руководство RSA Security. - Бином, 2002. - 384 c.
- Кнут Д. Искусство программирования, т. 2. Получисленые алгоритмы. – М.: Вильямс, 2003. - 832 c.
- Вельшенбах М. Криптография на Си и C++ в действии. - Триумф, 2004. - 464 c. + CD ROM
- Бурдаев О. и др. Ассемблер в задачах защиты информации. - КУДИЦ-ОБРАЗ, 2002. - 320 c.
- Фергюсон Н., Шнайер Б. Практическая криптография. - Вильямс, 2005. - 424 с.
- Мао В. Современная криптография. Теория и практика.- Вильямс, 2005. - 768 с.
- Молдовян Н.А., Молдовян А.А. Введение в криптосистемы с открытым ключом. Уч.пособие. - BHV-СПб, 2005. - 288 c.
ОТЗИ Конспекты
Лекция 1 Основные понятия информационной безопасности
Понятие информационной безопасности
Словосочетание "информационная безопасность" в разных контекстах может иметь различный смысл. В Доктрине информационной безопасности Российской Федерации термин "информационная безопасность" используется в широком смысле. Имеется в виду состояние защищенности национальных интересов в информационной сфере, определяемых совокупностью сбалансированных интересов личности, общества и государства.
В Законе РФ "Об участии в международном информационном обмене" информационная безопасность определяется аналогичным образом – как состояние защищенности информационной среды общества, обеспечивающее ее формирование, использование и развитие в интересах граждан, организаций, государства.
В данном курсе наше внимание будет сосредоточено на хранении, обработке и передаче информации вне зависимости от того, на каком языке (русском или каком-либо ином) она закодирована, кто или что является ее источником и какое психологическое воздействие она оказывает на людей. Поэтому термин "информационная безопасность" будет использоваться в узком смысле, так, как это принято, например, в англоязычной литературе.
Под информационной безопасностью мы будем понимать защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, которые могут нанести неприемлемый ущерб субъектам информационных отношений, в том числе владельцам и пользователям информации и поддерживающей инфраструктуры. (Чуть дальше мы поясним, что следует понимать под поддерживающей инфраструктурой.)
Защита информации – это комплекс мероприятий, направленных на обеспечение информационной безопасности.
Таким образом, правильный с методологической точки зрения подход к проблемам информационной безопасности начинается с выявления субъектов информационных отношений и интересов этих субъектов, связанных с использованием информационных систем (ИС). Угрозы информационной безопасности – это оборотная сторона использования информационных технологий.
Из этого положения можно вывести два важных следствия:
Трактовка проблем, связанных с информационной безопасностью, для разных категорий субъектов может существенно различаться. Для иллюстрации достаточно сопоставить режимные государственные организации и учебные институты. В первом случае "пусть лучше все сломается, чем враг узнает хоть один секретный бит", во втором – "да нет у нас никаких секретов, лишь бы все работало".
Информационная безопасность не сводится исключительно к защите от несанкционированного доступа к информации, это принципиально более широкое понятие. Субъект информационных отношений может пострадать (понести убытки и/или получить моральный ущерб) не только от несанкционированного доступа, но и от поломки системы, вызвавшей перерыв в работе. Более того, для многих открытых организаций (например, учебных) собственно защита от несанкционированного доступа к информации стоит по важности отнюдь не на первом месте.
Возвращаясь к вопросам терминологии, отметим, что термин "компьютерная безопасность" (как эквивалент или заменитель ИБ) представляется нам слишком узким. Компьютеры – только одна из составляющих информационных систем, и хотя наше внимание будет сосредоточено в первую очередь на информации, которая хранится, обрабатывается и передается с помощью компьютеров, ее безопасность определяется всей совокупностью составляющих и, в первую очередь, самым слабым звеном, которым в подавляющем большинстве случаев оказывается человек (записавший, например, свой пароль на "горчичнике", прилепленном к монитору).
Согласно определению информационной безопасности, она зависит не только от компьютеров, но и от поддерживающей инфраструктуры, к которой можно отнести системы электро-, водо- и теплоснабжения, кондиционеры, средства коммуникаций и, конечно, обслуживающий персонал. Эта инфраструктура имеет самостоятельную ценность, но нас будет интересовать лишь то, как она влияет на выполнение информационной системой предписанных ей функций.
Обратим внимание, что в определении ИБ перед существительным "ущерб" стоит прилагательное "неприемлемый". Очевидно, застраховаться от всех видов ущерба невозможно, тем более невозможно сделать это экономически целесообразным способом, когда стоимость защитных средств и мероприятий не превышает размер ожидаемого ущерба. Значит, с чем-то приходится мириться и защищаться следует только от того, с чем смириться никак нельзя. Иногда таким недопустимым ущербом является нанесение вреда здоровью людей или состоянию окружающей среды, но чаще порог неприемлемости имеет материальное (денежное) выражение, а целью защиты информации становится уменьшение размеров ущерба до допустимых значений.
Основные составляющие информационной безопасности
Информационная безопасность – многогранная, можно даже сказать, многомерная область деятельности, в которой успех может принести только систематический, комплексный подход.
Спектр интересов субъектов, связанных с использованием информационных систем, можно разделить на следующие категории: обеспечение доступности, целостности и конфиденциальности информационных ресурсов и поддерживающей инфраструктуры.
Иногда в число основных составляющих ИБ включают защиту от несанкционированного копирования информации, но, на наш взгляд, это слишком специфический аспект с сомнительными шансами на успех, поэтому мы не станем его выделять.
Поясним понятия доступности, целостности и конфиденциальности.
Доступность – это возможность за приемлемое время получить требуемую информационную услугу. Под целостностью подразумевается актуальность и непротиворечивость информации, ее защищенность от разрушения и несанкционированного изменения.
Наконец, конфиденциальность – это защита от несанкционированного доступа к информации.
Информационные системы создаются (приобретаются) для получения определенных информационных услуг. Если по тем или иным причинам предоставить эти услуги пользователям становится невозможно, это, очевидно, наносит ущерб всем субъектам информационных отношений. Поэтому, не противопоставляя доступность остальным аспектам, мы выделяем ее как важнейший элемент информационной безопасности.
Особенно ярко ведущая роль доступности проявляется в разного рода системах управления – производством, транспортом и т.п. Внешне менее драматичные, но также весьма неприятные последствия – и материальные, и моральные – может иметь длительная недоступность информационных услуг, которыми пользуется большое количество людей (продажа железнодорожных и авиабилетов, банковские услуги и т.п.).
Целостность можно подразделить на статическую (понимаемую как неизменность информационных объектов) и динамическую (относящуюся к корректному выполнению сложных действий (транзакций)). Средства контроля динамической целостности применяются, в частности, при анализе потока финансовых сообщений с целью выявления кражи, переупорядочения или дублирования отдельных сообщений.
Целостность оказывается важнейшим аспектом ИБ в тех случаях, когда информация служит "руководством к действию". Рецептура лекарств, предписанные медицинские процедуры, набор и характеристики комплектующих изделий, ход технологического процесса – все это примеры информации, нарушение целостности которой может оказаться в буквальном смысле смертельным. Неприятно и искажение официальной информации, будь то текст закона или страница Web-сервера какой-либо правительственной организации. Конфиденциальность – самый проработанный у нас в стране аспект информационной безопасности. К сожалению, практическая реализация мер по обеспечению конфиденциальности современных информационных систем наталкивается в России на серьезные трудности. Во-первых, сведения о технических каналах утечки информации являются закрытыми, так что большинство пользователей лишено возможности составить представление о потенциальных рисках. Во-вторых, на пути пользовательской криптографии как основного средства обеспечения конфиденциальности стоят многочисленные законодательные препоны и технические проблемы.
Если вернуться к анализу интересов различных категорий субъектов информационных отношений, то почти для всех, кто реально использует ИС, на первом месте стоит доступность. Практически не уступает ей по важности целостность – какой смысл в информационной услуге, если она содержит искаженные сведения?
Наконец, конфиденциальные моменты есть также у многих организаций (даже в упоминавшихся выше учебных институтах стараются не разглашать сведения о зарплате сотрудников) и отдельных пользователей (например, пароли).
Важность и сложность проблемы информационной безопасности
Информационная безопасность является одним из важнейших аспектов интегральной безопасности, на каком бы уровне мы ни рассматривали последнюю – национальном, отраслевом, корпоративном или персональном.
Для иллюстрации этого положения ограничимся несколькими примерами.
В Доктрине информационной безопасности Российской Федерации (здесь, подчеркнем, термин "информационная безопасность" используется в широком смысле) защита от несанкционированного доступа к информационным ресурсам, обеспечение безопасности информационных и телекоммуникационных систем выделены в качестве важных составляющих национальных интересов РФ в информационной сфере.
По распоряжению президента США Клинтона (от 15 июля 1996 года, номер 13010) была создана Комиссия по защите критически важной инфраструктуры как от физических нападений, так и от атак, предпринятых с помощью информационного оружия. В начале октября 1997 года при подготовке доклада президенту глава вышеупомянутой комиссии Роберт Марш заявил, что в настоящее время ни правительство, ни частный сектор не располагают средствами защиты от компьютерных атак, способных вывести из строя коммуникационные сети и сети энергоснабжения.
Американский ракетный крейсер "Йорктаун" был вынужден вернуться в порт из-за многочисленных проблем с программным обеспечением, функционировавшим на платформе Windows NT 4.0 (Government Computer News, июль 1998). Таким оказался побочный эффект программы ВМФ США по максимально широкому использованию коммерческого программного обеспечения с целью снижения стоимости военной техники.
Заместитель начальника управления по экономическим преступлениям Министерства внутренних дел России сообщил, что российские хакеры с 1994 по 1996 год предприняли почти 500 попыток проникновения в компьютерную сеть Центрального банка России. В 1995 году ими было похищено 250 миллиардов рублей (ИТАР-ТАСС, AP, 17 сентября 1996 года).
Как сообщил журнал Internet Week от 23 марта 1998 года, потери крупнейших компаний, вызванные компьютерными вторжениями, продолжают увеличиваться, несмотря на рост затрат на средства обеспечения безопасности. Согласно результатам совместного исследования Института информационной безопасности и ФБР, в 1997 году ущерб от компьютерных преступлений достиг 136 миллионов долларов, что на 36% больше, чем в 1996 году. Каждое компьютерное преступление наносит ущерб примерно в 200 тысяч долларов.
В середине июля 1996 года корпорация General Motors отозвала 292860 автомобилей марки Pontiac, Oldsmobile и Buick моделей 1996 и 1997 годов, поскольку ошибка в программном обеспечении двигателя могла привести к пожару.
В феврале 2001 года двое бывших сотрудников компании Commerce One, воспользовавшись паролем администратора, удалили с сервера файлы, составлявшие крупный (на несколько миллионов долларов) проект для иностранного заказчика. К счастью, имелась резервная копия проекта, так что реальные потери ограничились расходами на следствие и средства защиты от подобных инцидентов в будущем. В августе 2002 года преступники предстали перед судом.
Одна студентка потеряла стипендию в 18 тысяч долларов в Мичиганском университете из-за того, что ее соседка по комнате воспользовалась их общим системным входом и отправила от имени своей жертвы электронное письмо с отказом от стипендии.
Понятно, что подобных примеров множество, можно вспомнить и другие случаи – недостатка в нарушениях ИБ нет и не предвидится. Чего стоит одна только "Проблема 2000" – стыд и позор программистского сообщества!
При анализе проблематики, связанной с информационной безопасностью, необходимо учитывать специфику данного аспекта безопасности, состоящую в том, что информационная безопасности есть составная часть информационных технологий – области, развивающейся беспрецедентно высокими темпами. Здесь важны не столько отдельные решения (законы, учебные курсы, программно-технические изделия), находящиеся на современном уровне, сколько механизмы генерации новых решений, позволяющие жить в темпе технического прогресса.
К сожалению, современная технология программирования не позволяет создавать безошибочные программы, что не способствует быстрому развитию средств обеспечения ИБ. Следует исходить из того, что необходимо конструировать надежные системы (информационной безопасности) с привлечением ненадежных компонентов (программ). В принципе, это возможно, но требует соблюдения определенных архитектурных принципов и контроля состояния защищенности на всем протяжении жизненного цикла ИС.
Приведем еще несколько цифр. В марте 1999 года был опубликован очередной, четвертый по счету, годовой отчет "Компьютерная преступность и безопасность-1999: проблемы и тенденции" (Issues and Trends: 1999 CSI/FBI Computer Crime and Security Survey). В отчете отмечается резкий рост числа обращений в правоохранительные органы по поводу компьютерных преступлений (32% из числа опрошенных); 30% респондентов сообщили о том, что их информационные системы были взломаны внешними злоумышленниками; атакам через Internet подвергались 57% опрошенных; в 55% случаях отмечались нарушения со стороны собственных сотрудников. Примечательно, что 33% респондентов на вопрос "были ли взломаны ваши Web-серверы и системы электронной коммерции за последние 12 месяцев?" ответили "не знаю".
В аналогичном отчете, опубликованном в апреле 2002 года, цифры изменились, но тенденция осталась прежней: 90% респондентов (преимущественно из крупных компаний и правительственных структур) сообщили, что за последние 12 месяцев в их организациях имели место нарушения информационной безопасности; 80% констатировали финансовые потери от этих нарушений; 44% (223 респондента) смогли и/или захотели оценить потери количественно, общая сумма составила более 455 млн. долларов. Наибольший ущерб нанесли кражи и подлоги (более 170 и 115 млн. долларов соответственно).
Столь же тревожные результаты содержатся в обзоре InformationWeek, опубликованном 12 июля 1999 года. Лишь 22% респондентов заявили об отсутствии нарушений информационной безопасности. Наряду с распространением вирусов отмечается резкий рост числа внешних атак.
Увеличение числа атак – еще не самая большая неприятность. Хуже то, что постоянно обнаруживаются новые уязвимые места в программном обеспечении (выше мы указывали на ограниченность современной технологии программирования) и, как следствие, появляются новые виды атак.
Так, в информационном письме Национального центра защиты инфраструктуры США (National Infrastructure Protection Center, NIPC) от 21 июля 1999 года сообщается, что за период с 3 по 16 июля 1999 года выявлено девять проблем с ПО, риск использования которых оценивается как средний или высокий (общее число обнаруженных уязвимых мест равно 17). Среди "пострадавших" операционных платформ – почти все разновидности ОС Unix, Windows, MacOS, так что никто не может чувствовать себя спокойно, поскольку новые ошибки тут же начинают активно использоваться злоумышленниками.
В таких условиях системы информационной безопасности должны уметь противостоять разнообразным атакам, как внешним, так и внутренним, атакам автоматизированным и скоординированным. Иногда нападение длится доли секунды; порой прощупывание уязвимых мест ведется медленно и растягивается на часы, так что подозрительная активность практически незаметна. Целью злоумышленников может быть нарушение всех составляющих ИБ – доступности, целостности или конфиденциальности.
Несколько интересных цифр об атаках на информацию. Они были получены исследовательским центром DataPro Research в 1998 году. Основные причины повреждений электронной информации распределились следующим образом: неумышленная ошибка человека – 52% случаев, умышленные действия человека - 10% случаев, отказ техники – 10% случаев, повреждения в результате пожара - 15% случаев, повреждения водой – 10% случаев. Как видим, каждый десятый случай повреждения электронных данных связан с компьютерными атаками.
Кто был исполнителем этих действий: в 81% случаев – текущий кадровый состав учреждений, только в 13% случаев – совершенно посторонние люди, и в 6% случаев – бывшие работники этих же учреждений. Доля атак, производимых сотрудниками фирм и предприятий, просто ошеломляет и заставляет вспомнить не только о технических, но и о психологических методах профилактики подобных действий.
И, наконец, что же именно предпринимают злоумышленники, добравшись до информации: в 44% случаев взлома были произведены непосредственные кражи денег с электронных счетов, в 16% случаев выводилось из строя программное обеспечение, столь же часто – в 16% случаев – производилась кража информации с различными последствиями, в 12% случаев информация была cфальсифицирована, в 10% случаев злоумышленники с помощью компьютера воспользовались либо заказали услуги, к которым в принципе не должны были иметь доступа.
Категории информационной безопасности
В тех случаях, когда идет речь о безопасности, в отношении информации и информационно-вычислительных систем применяются общепринятые термины о свойствах этих объектов – категории.
Информация с точки зрения информационной безопасности обладает следующими категориями:
конфиденциальность – гарантия того, что конкретная информация доступна только тому кругу лиц, для кого она предназначена; нарушение этой категории называется хищением либо раскрытием информации
целостность – гарантия того, что информация сейчас существует в ее исходном виде, то есть при ее хранении или передаче не было произведено несанкционированных изменений; нарушение этой категории называется фальсификацией сообщения
аутентичность – гарантия того, что источником информации является именно то лицо, которое заявлено как ее автор; нарушение этой категории также называется фальсификацией, но уже автора сообщения
апеллируемость – довольно сложная категория, но часто применяемая в электронной коммерции – гарантия того, что при необходимости можно будет доказать, что автором сообщения является именно заявленный человек, и не может являться никто другой; отличие этой категории от предыдущей в том, что при подмене автора, кто-то другой пытается заявить, что он автор сообщения, а при нарушении апеллируемости – сам автор пытается "откреститься" от своих слов, подписанных им однажды.
В отношении информационных систем применяются иные категории :
надежность – гарантия того, что система ведет себя в нормальном и внештатном режимах так, как запланировано
точность – гарантия точного и полного выполнения всех команд
контроль доступа – гарантия того, что различные группы лиц имеют различный доступ к информационным объектам, и эти ограничения доступа постоянно выполняются
контролируемость – гарантия того, что в любой момент может быть произведена полноценная проверка любого компонента программного комплекса
контроль идентификации – гарантия того, что клиент, подключенный в данный момент к системе, является именно тем, за кого себя выдает
устойчивость к умышленным сбоям – гарантия того, что при умышленном внесении ошибок в пределах заранее оговоренных норм система будет вести себя так, как оговорено заранее.
Абстрактные модели защиты информации
Разработки в области теории защиты информационных объектов велись достаточно давно. Их результатами являются так называемые абстрактные модели защиты данных, в которых исследователи излагают общие идеи по этому вопросу и формируют наборы ограничений, связывающие субъект, объект и прочие категории.
Одной из первых моделей была опубликованная в 1977 модель Биба (Biba). Согласно ей все субъекты и объекты предварительно разделяются по нескольким уровням доступа, а затем на их взаимодействия накладываются следующие ограничения: 1) субъект не может вызывать на исполнение субъекты с более низким уровнем доступа; 2) субъект не может модифицировать объекты с более высоким уровнем доступа. Как видим, эта модель очень напоминает ограничения, введенные в защищенном режиме микропроцессоров Intel 80386+ относительно уровней привилегий.
Модель Гогена-Мезигера (Goguen-Meseguer), представленная ими в 1982 году, основана на теории автоматов. Согласно ей система может при каждом действии переходить из одного разрешенного состояния только в несколько других. Субъекты и объекты в данной модели защиты разбиваются на группы – домены, и переход системы из одного состояния в другое выполняется только в соответствии с так называемой таблицей разрешений, в которой указано какие операции может выполнять субъект, скажем, из домена C над объектом из домена D. В данной модели при переходе системы из одного разрешенного состояния в другое используются транзакции, что обеспечивает общую целостность системы.
Сазерлендская (от англ. Sutherland) модель защиты, опубликованная в 1986 году, делает акцент на взаимодействии субъектов и потоков информации. Так же как и в предыдущей модели, здесь используется машина состояний со множеством разрешенных комбинаций состояний и некоторым набором начальных позиций. В данной модели исследуется поведение множественных композиций функций перехода из одного состояния в другое.
Важную роль в теории защиты информации играет модель защиты Кларка-Вильсона (Clark-Wilson), опубликованная в 1987 году и модифицированная в 1989. Основана данная модель на повсеместном использовании транзакций и тщательном оформлении прав доступа субъектов к объектам. Но в данной модели впервые исследована защищенность третьей стороны в данной проблеме – стороны, поддерживающей всю систему безопасности. Эту роль в информационных системах обычно играет программа-супервизор. Кроме того, в модели Кларка-Вильсона транзакции впервые были построены по методу верификации, то есть идентификация субъекта производилась не только перед выполнением команды от него, но и повторно после выполнения. Это позволило снять проблему подмены автора в момент между его идентификацией и собственно командой. Модель Кларка-Вильсона считается одной из самых совершенных в отношении поддержания целостности информационных систем.
Взаимосвязь основных понятий безопасности информационных систем
Рассмотрим основные понятия, относящиеся к информационной безопасности, и их взаимосвязь.
Собственник определяет множество информационных ценностей, которые должны быть защищены от различного рода атак. Атаки осуществляются противниками или оппонентами, использующими различные уязвимости в защищаемых ценностях. Основными нарушениями безопасности являются раскрытие информационных ценностей (потеря конфиденциальности), их неавторизованная модификация (потеря целостности) или неавторизованная потеря доступа к этим ценностям (потеря доступности).
Собственники информационных ценностей анализируют уязвимости защищаемых ресурсов и возможные атаки, которые могут иметь место в конкретном окружении. В результате такого анализа определяются риски для данного набора информационных ценностей. Этот анализ определяет выбор контрмер, который задается политикой безопасности и обеспечивается с помощью механизмов и сервисов безопасности. Следует учитывать, что отдельные уязвимости могут сохраниться и после применения механизмов и сервисов безопасности. Политика безопасности определяет согласованную совокупность механизмов и сервисов безопасности, адекватную защищаемым ценностям и окружению, в котором они используются.
На рис.1 показана взаимосвязь рассмотренных выше понятий информационной безопасности.
Рис. 1. Взаимосвязь основных понятий безопасности информационных систем
Дадим следующие определения:
Уязвимость - слабое место в системе, с использованием которого может быть осуществлена атака.
Риск - вероятность того, что конкретная атака будет осуществлена с использованием конкретной уязвимости. В конечном счете, каждая организация должна принять решение о допустимом для нее уровне риска. Это решение должно найти отражение в политике безопасности, принятой в организации.
Политика безопасности - правила, директивы и практические навыки, которые определяют то, как информационные ценности обрабатываются, защищаются и распространяются в организации и между информационными системами; набор критериев для предоставления сервисов безопасности.
Атака - любое действие, нарушающее безопасность информационной системы. Более формально можно сказать, что атака - это действие или последовательность связанных между собой действий, использующих уязвимости данной информационной системы и приводящих к нарушению политики безопасности.
Механизм безопасности - программное и/или аппаратное средство, которое определяет и/или предотвращает атаку.
Сервис безопасности - сервис, который обеспечивает задаваемую политикой безопасность систем и/или передаваемых данных, либо определяет осуществление атаки. Сервис использует один или более механизмов безопасности.
Рассмотрим модель сетевой безопасности и основные типы атак, которые могут осуществляться в этом случае. Затем рассмотрим основные типы сервисов и механизмов безопасности, предотвращающих такие атаки.
Лекция 2 Модель сетевой безопасности
Классификация сетевых атак
В общем случае существует информационный поток от отправителя (файл, пользователь, компьютер) к получателю (файл, пользователь, компьютер):
Рис. 2. Информационный поток
Все атаки можно разделить на два класса: пассивные и активные.
I. Пассивная атака
Пассивной называется такая атака, при которой противник не имеет возможности модифицировать передаваемые сообщения и вставлять в информационный канал между отправителем и получателем свои сообщения. Целью пассивной атаки может быть только прослушивание передаваемых сообщений и анализ трафика.
Рис. 3. Пассивная атака
II. Активная атака
Активной называется такая атака, при которой противник имеет возможность модифицировать передаваемые сообщения и вставлять свои сообщения. Различают следующие типы активных атак:
1. Отказ в обслуживании - DoS-атака (Denial of Service)
Отказ в обслуживании нарушает нормальное функционирование сетевых сервисов. Противник может перехватывать все сообщения, направляемые определенному адресату. Другим примером подобной атаки является создание значительного трафика, в результате чего сетевой сервис не сможет обрабатывать запросы законных клиентов. Классическим примером такой атаки в сетях TCP/IP является SYN-атака, при которой нарушитель посылает пакеты, инициирующие установление ТСР-соединения, но не посылает пакеты, завершающие установление этого соединения. В результате может произойти переполнение памяти на сервере, и серверу не удастся установить соединение с законными пользователями.
Рис. 4. DoS-атака
2. Модификация потока данных - атака "man in the middle"
Модификация потока данных означает либо изменение содержимого пересылаемого сообщения, либо изменение порядка сообщений.
Рис. 5. Атака "man in the middle"
3. Создание ложного потока (фальсификация)
Фальсификация (нарушение аутентичности) означает попытку одного субъекта выдать себя за другого.
Рис. 6. Создание ложного потока
4. Повторное использование
Повторное использование означает пассивный захват данных с последующей их пересылкой для получения несанкционированного доступа - это так называемая replay-атака. На самом деле replay-атаки являются одним из вариантов фальсификации, но в силу того, что это один из наиболее распространенных вариантов атаки для получения несанкционированного доступа, его часто рассматривают как отдельный тип атаки.
Рис. 7. Replay-атака
Перечисленные атаки могут существовать в любых типах сетей, а не только в сетях, использующих в качестве транспорта протоколы TCP/IP, и на любом уровне модели OSI. Но в сетях, построенных на основе TCP/IP, атаки встречаются чаще всего, потому что, во-первых, Internet стал самой распространенной сетью, а во-вторых, при разработке протоколов TCP/IP требования безопасности никак не учитывались.
Сервисы безопасности
Основными сервисами безопасности являются следующие:
Конфиденциальность - предотвращение пассивных атак для передаваемых или хранимых данных.
Аутентификация - подтверждение того, что информация получена из законного источника, и получатель действительно является тем, за кого себя выдает. В случае передачи единственного сообщения аутентификация должна гарантировать, что получателем сообщения является тот, кто нужно, и сообщение получено из заявленного источника. В случае установления соединения имеют место два аспекта. Во-первых, при инициализации соединения сервис должен гарантировать, что оба участника являются требуемыми. Во-вторых, сервис должен гарантировать, что на соединение не воздействуют таким образом, что третья сторона сможет маскироваться под одну из легальных сторон уже после установления соединения.
Целостность - сервис, гарантирующий, что информация при хранении или передаче не изменилась. Может применяться к потоку сообщений, единственному сообщению или отдельным полям в сообщении, а также к хранимым файлам и отдельным записям файлов.
Невозможность отказа - невозможность, как для получателя, так и для отправителя, отказаться от факта передачи. Таким образом, когда сообщение отправлено, получатель может убедиться, что это сделал легальный отправитель. Аналогично, когда сообщение пришло, отправитель может убедиться, что оно получено легальным получателем.
Контроль доступа - возможность ограничить и контролировать доступ к системам и приложениям по коммуникационным линиям.
Доступность - результатом атак может быть потеря или снижение доступности того или иного сервиса. Данный сервис предназначен для того, чтобы минимизировать возможность осуществления DoS-атак.
Механизмы безопасности
Перечислим основные механизмы безопасности:
Алгоритмы симметричного шифрования - алгоритмы шифрования, в которых для шифрования и дешифрования используется один и тот же ключ или ключ дешифрования легко может быть получен из ключа шифрования.
Алгоритмы асимметричного шифрования - алгоритмы шифрования, в которых для шифрования и дешифрования используются два разных ключа, называемые открытым и закрытым ключами, причем, зная один из ключей, вычислить другой невозможно.
Хэш-функции - функции, входным значением которых является сообщение произвольной длины, а выходным значением - сообщение фиксированной длины. Хэш-функции обладают рядом свойств, которые позволяют с высокой долей вероятности определять изменение входного сообщения.
Модель сетевого взаимодействия
Модель безопасного сетевого взаимодействия в общем виде можно представить следующим образом:
Рис. 8. Модель сетевой безопасности
Сообщение, которое передается от одного участника другому, проходит через различного рода сети. При этом будем считать, что устанавливается логический информационный канал от отправителя к получателю с использованием различных коммуникационных протоколов (например, ТСР/IP).
Средства безопасности необходимы, если требуется защитить передаваемую информацию от противника, который может представлять угрозу конфиденциальности, аутентификации, целостности и т.п. Все технологии повышения безопасности имеют два компонента:
- Относительно безопасная передача информации. Примером является вид шифрования, когда сообщение изменяется таким образом, что становится нечитаемым для противника, и, возможно, дополняется кодом, который основан на содержимом сообщения и может использоваться для аутентификации отправителя и обеспечения целостности сообщения.
- Некоторая секретная информация, разделяемая обоими участниками и неизвестная противнику. Примером является ключ шифрования.
Кроме того, в некоторых случаях для обеспечения безопасной передачи бывает необходима третья доверенная сторона (third trusted party - TTP). Например, третья сторона может быть ответственной за распределение между двумя участниками секретной информации, которая не стала бы доступна противнику. Либо третья сторона может использоваться для решения споров между двумя участниками относительно достоверности передаваемого сообщения.
Из данной общей модели вытекают три основные задачи, которые необходимо решить при разработке конкретного сервиса безопасности:
- Разработать алгоритм шифрования/дешифрования для выполнения безопасной передачи информации. Алгоритм должен быть таким, чтобы противник не мог расшифровать перехваченное сообщение, не зная секретную информацию.
- Создать секретную информацию, используемую алгоритмом шифрования.
Разработать протокол обмена сообщениями для распределения разделяемой секретной информации таким образом, чтобы она не стала известна противнику.
Модель безопасности информационной системы
Существуют и другие относящиеся к безопасности ситуации, которые не соответствуют описанной выше модели сетевой безопасности. Общую модель этих ситуаций можно проиллюстрировать следующим образом:
Рис. 9. Модель безопасности информационной системы
Данная модель иллюстрирует концепцию безопасности информационной системы, с помощью которой предотвращается нежелательный доступ. Хакер, который пытается осуществить незаконное проникновение в системы, доступные по сети, может просто получать удовольствие от взлома, а может стараться повредить информационную систему и/или внедрить в нее что-нибудь для своих целей. Например, целью хакера может быть получение номеров кредитных карточек, хранящихся в системе.
Другим типом нежелательного доступа является размещение в вычислительной системе чего-либо, что воздействует на прикладные программы и программные утилиты, такие как редакторы, компиляторы и т.п. Таким образом, существует два типа атак:
- Доступ к информации с целью получения или модификации хранящихся в системе данных.
- Атака на сервисы, чтобы помешать использовать их.
Вирусы и черви - примеры подобных атак. Такие атаки могут осуществляться как с помощью дискет, так и по сети.
Сервисы безопасности, которые предотвращают нежелательный доступ, можно разбить на две категории:
- Первая категория определяется в терминах сторожевой функции. Эти механизмы включают процедуры входа, основанные, например, на использовании пароля, что позволяет разрешить доступ только авторизованным пользователям. Эти механизмы также включают различные защитные экраны (firewalls), которые предотвращают атаки на различных уровнях стека протоколов TCP/IP, и, в частности, позволяют предупреждать проникновение червей, вирусов, а также предотвращать другие подобные атаки.
- Вторая линия обороны состоит из различных внутренних мониторов, контролирующих доступ и анализирующих деятельность пользователей.
Одним из основных понятий при обеспечении безопасности информационной системы является понятие авторизации - определение и предоставление прав доступа к конкретным ресурсам и/или объектам.
В основу безопасности информационной системы должны быть положены следующие основные принципы:
- Безопасность информационной системы должна соответствовать роли и целям организации, в которой данная система установлена.
- Обеспечение информационной безопасности требует комплексного и целостного подхода.
- Информационная безопасность должна быть неотъемлемой частью системы управления в данной организации.
- Информационная безопасность должна быть экономически оправданной.
- Ответственность за обеспечение безопасности должна быть четко определена.
- Безопасность информационной системы должна периодически переоцениваться.
- Большое значение для обеспечения безопасности информационной системы имеют социальные факторы, а также меры административной, организационной и физической безопасности.