Приказ от 20 г. № Математика 11 класс Срок освоения 2 год. Разработчик программы
Вид материала | Пояснительная записка |
- Программа факультатива «Занимательная математика» Автор программы: Панова О. В. Возраст, 218.79kb.
- Приказ от № Директор школы: (Ёжикова М. С.) «Познай себя» 8 класс Срок реализации программы, 158.89kb.
- Нормати вный срок освоения программы 4 года Форма обучения очная Требования к результатам, 621.77kb.
- Приказ № от Рабочая программа по (предмету) Введение в общую биологию и экологию Класс, 990.63kb.
- Нормативный срок освоения программы 4 года Форма обучения очная Требования к результатам, 949.08kb.
- Нормативный срок, 21.25kb.
- Приказ № от 20009 г. Рабочая программа по литературе 7 класс (срок реализации 1 год), 154.79kb.
- Аннотация рабочей программы профессионального модуля сопровождение договоров страхования, 63.07kb.
- Разработанная на основе Программы. Математика. 5-11 классы /авт сост. И. И. Зубарева,, 449.45kb.
- Приказ № от 2010 г. Рабочая программа Алгебра и математический анализ 10 класс Составил:, 236.18kb.
1 2
Министерство образования и науки Российской Федерации
муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 3
Утверждаю
Директор МОУ СОШ № 3
___________ М.Н.Титова
приказ от «___»______20__г. № __
Математика
11 класс
Срок освоения 2 год.
Разработчик программы:
Наумова Надежда
Владимировна.
Апатиты
2010 год
Пояснительная записка
Статус документа
Рабочая программа по математике составлена на основе примерной программы среднего (полного) общего образования .
Учебники:
А.Г.Мордкович. «Алгебра и начала анализа. Учебник для 10-11 классов общеобразовательных учреждений» (М:Мнемозина, 2009), Атанасян Л. С. и др. «Геометрия 10-11. Учебник для общеобразовательных учреждений» (М.: Просвещение, 2006).
Место предмета в федеральном базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени среднего (полного) общего образования отводится 5ч в неделю в 10 и 11 классах. Из них на алгебру и начала анализа по 3 часа в неделю , на геометрию- 2 ч.в неделю. Рабочая программа рассчитана на 340 учебных часов в 10-11 классе (на алгебру и геометрию).
Структура программы.
Программа по математике для общеобразовательных учреждений состоит из трех разделов: «Требования к математической подготовке учащихся», «Содержание обучения», «Тематическое планирование учебного материала», список учебно-методической литературы, КИМ, позволяющие оценить качество выполнения учебной программы.
Задачи
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
знакомство с основными идеями и методами математического анализа.
Цели
Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
Место предмета в федеральном базисном учебном плане.
Согласно базисному учебному плану для образовательных учреждений РФ на изучение математики на ступени полного общего образования отводится не менее 340 часов из расчета 5 часов в неделю.
Рабочая программа разработана на 340 часов для 10-11классов из расчета 5 часов в неделю.
Учебный план
Основное содержание | Количество часов, отведенных на изучение математики в средней (полной) школе | ||
10 класс | 11 класс | Всего часов | |
Корни и степени | | 11 | 11 |
Логарифм | | 22 | 22 |
Основы тригонометрии | 27 | | 27 |
Функции | 32 | 10 | 42 |
Начала математического анализа | 23 | 11 | 34 |
Уравнения и неравенства | 10 | 35 | 45 |
Элементы комбинаторики, статистики и теории вероятностей | 10 | 11 | 21 |
Прямые и плоскости в пространстве | 44 | | 44 |
Многогранники | 12 | | 12 |
Тела и поверхности вращения | | 17 | 17 |
Объёмы тел и площади их поверхностей | | 23 | 23 |
Координаты и векторы | | 21 | 21 |
Прогнозируемый результат обучения
В результате изучения математики в старшей школе ученик должен
Знать/понимать1
значение математической науки для решения задач, возникающих в теории и в практике; широту и, в то же время, ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира.
алгебра
Уметь
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.
Функции и графики
Уметь
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя их графики;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
Начала математического анализа
Уметь
вычислять производные элементарных функций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов с использованием аппарата математического анализа.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
решения прикладных, в том числе социально-экономических и физических, задач на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
Уметь
решать рациональные, показательные и логарифмические уравнения и неравенства;
составлять уравнения по условию задачи;
использовать для приближенного решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
построения и исследования простейших математических моделей.
Элементы комбинаторики, статистики и теории вероятностей
Уметь
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
вычислять в простейших случаях вероятности событий на основе подсчета числа исходов.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.
Геометрия
Уметь
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для :
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Список литературы, использованной при составлении рабочей программы.
Методические материалы:
журнал «Математика в школе»
газета «Математика», приложение к газете «Первое сентября»
Концепция модернизации российского образования на период до 2010// «Вестник образования» -2002- № 6 - с.11-40.
Дорофеев Г. В. и др. Оценка качества подготовки выпускников средней (полной) школы по математике. М.: Дрофа, 2002.
Федеральный компонент государственного стандарта среднего (полного) общего образования по математике //«Вестник образования» -2004 - № 14 - с.107-119.
Дидактические материалы:
Ивлев Б.М. Дидактические материалы по алгебре и началам анализа для 10 класса– М.: Просвещение, 2003.
Ивлев Б.М. Дидактические материалы по алгебре и началам анализа для 11 класса– М.: Просвещение, 2003.
Зив Б.Г. Дидактические материалы по геометрии для 10 класса– М.: Просвещение, 2003.
Зив Б.Г. Дидактические материалы по геометрии для 11 класса– М.: Просвещение, 2003.
Интернет-источники:
www.ege.moipkro.ru
ссылка скрыта
ege.edu.ru
www.mioo.ru
www.1september.ru
www.math.ru
www.allmath.ru
www.uztest.ru
echno.ru/tech/index.php
og.alledu.ru/predmet/math/more2.php
.msu.ru:8080/index.jsp
nta.ru/
nce.narod.ru/
chat.ru/index.php
et.spb.ru/
/vschool/demo/education.asp?subj=292
u/subject.asp?id=10000191
n.bigli.ru
Учебно – тематическое планирование по алгебре.
№ урока | Тема (подтема) | Кол- во часов | Сроки освоения | Цели | Формы организации учебной деятельности | Виды контроля | |
1 -2 | Повторение: производная и ее применение | 2 | | Знать формулы и правила дифференцирования. Уметь :находить производную, писать уравнение касательной, исследовать функцию на монотонность и экстремумы | Беседа, лекция, | Проверочная работа на повторение. | |
Первообразная и интеграл | 11 | | Формирование представлений о понятии первообразной, неопределенного и определенного интеграла Овладение умением применения первообразной функции при решении задачи вычисления площадей криволинейных трапеций и других плоских фигур | | | ||
3-4 | Определение первообразной. Формулы и правила нахождения первообразной | 2 | | Знать понятия первообразной и неопределенного интеграла. Уметь:находить первообразные, используя три правила и справочные таблицы,находить неопределенный интеграл по определению и таблицам. | беседа,лекция | | |
5 | Неопределенный интеграл | 1 | | Комбинированный урок | Фронтальный опрос, сам. работа | ||
6-7 | Определенный интеграл, его вычисления и свойства | 2 | | Знать формулу Ньютона-Лейбница. Уметь:применять формулу для вычисления определенного интеграла, находить площадь криволинейной трапеции,составлять схему вычисления площади плоской фигуры, применить интегрирование для вычисления площадей плоских фигур в более сложных ситуациях | Комбинированный урок | | |
8-9 | Геометрический смысл определенного интеграла | 2 | | Комбинированные уроки | тестовый контроль, | ||
10-12 | Вычисление площадей плоских фигур | 3 | | Комбинированные уроки | сам. работа | ||
13 | Контрольная работа № 1 «Первообразная. Интеграл» | 1 | | | Урок контроля, оценки и коррекции знаний учащихся. | Фронтальный тематический письменный контроль | |
Степени и корни. | 18 | | Формирование понятий «степень с рациональным показателем», «корень п-ой степени из действительного числа» Овладение умением применения свойств корня п-ой степени, преобразования выражений, содержащих радикалы Обобщение и систематизация знаний о степенной функции Формирование умения применять свойства в зависимости от значений оснований и показателей степени | | | ||
14-15 | Корень п-ой степени из действительного числа | 2 | | Знать: определение корня п-ой степени и его свойства. Уметь: выполнять преобразование выражений, содержащих радикалы. | беседа,лекция | Фронтальный опрос, | |
16-17 | Свойства корня п-ой степени | 2 | | Комбинированные уроки | тестовый контроль, | ||
18-20 | Преобразование выражений, содержащих радикалы | 3 | | Комбинированный урок | | ||
21-23 | Функции вида , их свойства и графики | 3 | | Знать, как определять значение функции по значению аргумента при различных способах задания. Уметь: строить график функции, описывать по графику или по формуле поведение и свойства функции. | беседа,лекция | Фронтальный опрос, | |
24-26 | Обобщение понятия о показателе степени | 3 | | Знать, как находить значения степени с рациональным показателем Уметь: находить значения степени с рациональным показателем,проводить преобразования буквенных выражений, содержащих степени, по формулам | Комбинированные уроки | тестовый контроль, сам. работа | |
27-30 | Степенные функции, их свойства и графики | 4 | | Знать , как строить графики степенных функций при различных значениях показателя. Уметь: описывать по графику или по формуле поведение и свойства функции. проводить по графику элементарное исследование функции. | беседа,лекция Комбинированные уроки | Фронтальный опрос, сам. работа | |
31 | Контрольная работа № 2 «Степени и корни. Степенные функции» | 1 | | | Урок контроля, оценки и коррекции знаний учащихся. | Фронтальный тематический письменный контроль | |
Показательная и логарифмическая функции | 28 | | Формирование представлений о показательной и логарифмической функциях, их графиках и свойствах Овладение умением понимать и читать свойства и графики показательной и логарифмической функций, решать показательные и логарифмические уравнения и неравенства Обобщение и систематизация знаний о степенной функции Создание условий для развития умения применять функционально-графические представления для описания и анализа закономерностей, существующих в окружающем мире и в смежных дисциплинах | | | ||
32 | Показательная функция. Свойства и график | 1 | | Знать определение показательной функции, ее свойства. Уметь: формулировать свойства, строить схематический график, определять значение функции по значению аргумента при различных способах задания. | беседа,лекция | Фронтальный опрос, | |
33-35 | Решение показательных уравнений | 3 | | Знать общий вид показательного уравнения. Уметь: решать простейшие показательные уравнения, применять различные методы решения показательных уравнений. | Лекция Комбинированные уроки | тестовый контроль, сам. работа | |
36-38 | Решение показательных неравенств | 3 | | Знать: общий вид показательного неравенства. Уметь: решать простейшие показательные неравенства, применять различные методы решения показательных неравенств. | Комбинированные уроки | | |
39 | Понятие логарифма | 1 | | Знать: определение логарифма, как использовать связь между степенью и логарифмом. Уметь: вычислять логарифм числа по определению | Лекция | Фронтальный опрос, | |
40-41 | Логарифмическая функция. Свойства и график | 2 | | Знать: определение логарифмической функции, ее свойства в зависимости от основания. Уметь: строить схематический график, определять значение функции по значению аргумента при различных способах задания. | беседа,лекция Комбинированные уроки | тестовый контроль, Фронтальный опрос, | |
42 | Контрольная работа № 3 «Показательная и логарифмическая функции. Показательные уравнения и неравенства» | 1 | | | Урок контроля, оценки и коррекции знаний учащихся. | Фронтальный тематический письменный контроль | |
43-44 | Свойства логарифмов | 2 | | Знать: свойства логарифмов. Уметь: выполнять арифметические действия, сочетая устные и письменные приемы; находить значения логарифма; проводить по известным формулам и правилам преобразования буквенных выражений, включающих логарифмы | Комбинированные уроки | Фронтальный опрос, сам. работа | |
45-49 | Решение логарифмических уравнений | 5 | | Знать: методы решения логарифмических уравнений. Уметь: решать простейшие логарифмические уравнения по определению; использовать метод введения новой переменной для сведения уравнения к рациональному виду | Комбинированные уроки, практикум | тестовый контроль, сам. работа | |
50-53 | Решение логарифмических неравенств | 4 | | Знать: алгоритм решения логарифмического неравенства в зависимости от основания. Уметь: решать простейшие логариф- мические неравенства, применяя метод замены переменных для сведения логарифмического неравенства к рациональному виду | Комбинированные уроки, практикум | | |
54-55 | Переход к новому основанию логарифма | 2 | | Знать: формулу перехода к новому основанию и два частных случая формулы перехода к новому основанию логарифма. Уметь: обосновывать суждения, давать определения, приводить доказательства, примеры | Комбинированные уроки | сам. работа | |
56-58 | Дифференцирование показательной и логарифмической функций | 3 | | Знать: формулы для нахождения производной и первообразной показательной и логарифмической функций. Уметь: вычислять производные и первообразные простейших показательных и логарифмических функций. | Комбинированные уроки | тестовый контроль, | |
59 | Контрольная работа № 4 «Логарифмические ур-ния и нер-ва. Дифференцирование пок. и логар.функций» | 1 | | | Урок контроля, оценки и коррекции знаний учащихся. | Фронтальный тематический письменный контроль | |
Уравнения и неравенства. Системы уравнений и неравенств | 20 | | формирование представлений об уравнениях, неравенствах и их системах; решении уравнения, неравенства и системы; уравнениях и неравенствах с параметром; овладение навыками общих методов решения уравнений, неравенств и их систем. обобщение и систематизация имеющихся сведений об уравнениях, неравенствах, системах и методах их решения; ознакомление с общими методами решения; | | | ||
60 | Общие методы решения уравнений: метод разложения на множители | 1 | | Знать: метод разложения на множител . Уметь: применять при решении рациональных уравнений | беседа,лекция | | |
61 | Общие методы решения уравнений: метод введения новой переменной | 1 | | Знать: метод введения новой переменной Уметь: применять при решении рациональных уравнений | беседа,лекция | Фронтальный опрос, | |
62 | Общие методы решения уравнений: Функционально-графический метод | 1 | | Знать: функционально-графический методо Уметь: применять при решении рациональных уравнений | беседа,лекция | | |
63 | Отработка всех методов решения уравнений | 1 | | Знать: основные методы решения алгебраических уравнений – разложение на множители , введение новой переменной, функционально-графический метод Уметь: применять при решении рациональных уравнений степени выше 2 | Комбинированный урок | тестовый контроль, | |
64-65 | Уравнения и неравенства с одной переменной. | 2 | | Знать: решение неравенств с одной переменной. Уметь: изображать на плоскости множество решений неравенств с одной переменной | Комбинированные уроки | сам. работа | |
66-67 | Уравнения и неравенства с двумя переменными. Системы уравнений и неравенств. | 2 | | Уметь: решать системы уравнений и неравенств с двумя переменными. | Комбинированные уроки | сам. работа | |
68-69 | Иррациональные неравенства | 2 | | Иметь представление о решении иррациональных неравенств Уметь: решать стандартные иррациональные неравенства | Комбинированные уроки | | |
70-72 | Уравнения и неравенства с модулями | 3 | | Иметь представление о решении уравнений и неравенств с модулем. Уметь: решать простейшие уравнения с модулем. | Комбинированные уроки | сам. работа | |
73-75 | Системы уравнений | 3 | | Знать, как графически и аналитически решать системы из двух и более уравнений. Уметь: графически и аналитически решать системы уравнений | Комбинированные уроки | сам. работа | |
76-78 | Уравнения и неравенства с параметрами | 3 | | Иметь представление о решении уравнений и неравенств с параметрами. Уметь: решать простейшие уравнения с параметрами | Комбинированные уроки | | |
79 | Контрольная работа № 5 «Уравнения и неравенства. Системы уравнений и неравенств» | 1 | | | Урок контроля, оценки и коррекции знаний учащихся. | Фронтальный тематический письменный контроль | |
Элементы математической статистики, комбинаторики и теории вероятностей. | 11 | | Формирование представлений о классической вероятностной схеме и классическом определении вероятности. Овладение умением решать комбинаторные задачи с выбором большого числа элементов данного множества. | | | ||
80 -81 | Статистическая обработка данных | 2 | | Знать основные этапы статистической обработки данных. Уметь составлять таблицы распределения данных, паспорт данных измерения, строить гистограмму распределения, вычислять дисперсию. | беседа,лекция | Фронтальный опрос, тестовый контроль, | |
82-83 | Простейшие вероятностные задачи | 2 | | Знать классическое определение вероятности, алгоритм нахождения вероятности случайного события, правило умножения. Уметь применять алгоритм при решении задач. | Комбинированные уроки | сам. работа | |
84-85 | Сочетания и размещения | 2 | | Знать определение факториала, числа сочетаний, числа перестановок. Уметь находить число перестановок и сочетаний по формуле. | Комбинированные уроки | Фронтальный опрос, | |
86-87 | Формула бинома Ньютона | 2 | | Знать формулу бинома Ньютона. Уметь применять формулу при решении задач. | Комбинированные уроки | | |
88-89 | Случайные события и их вероятности | 2 | | Знать классическую вероятностную схему, классическое определение вероятности, правило суммы, вероятность суммы событий. Уметь построить и исследовать модели различных ситуаций , связанных с понятием случайности. | беседа,лекция | Фронтальный опрос, тестовый контроль, | |
90 | Контрольная работа № 6 «Элементы математической статистики, комбинаторики и теории вероятностей». | 1 | | | Урок контроля, оценки и коррекции знаний учащихся. | Фронтальный тематический письменный контроль | |
Повторение | 12 | | Обобщение и систематизация курса математики за 10-11 класс, развитие способностей применения знаний и умений в решении заданий при подготовке к итоговой аттестации. | | | ||
91-93 | Производная, первообразная. | 3 | | | Комбинированные уроки | сам. работа | |
94- 96 | Показательная и логарифмическая функции. Решение уравнений и неравенств. | 3 | | | Комбинированные уроки | сам. работа | |
97-100 | Тригонометрические функции. Решение тригонометрических уравнений. Преобразование тригонометрических выражений. | 4 | | | Комбинированные уроки, практикум | сам. работа | |
101-102 | Итоговая контрольная работа в форме ЕГЭ. | 2 | | | Уроки контроля, оценки и коррекции знаний учащихся. | Фронтальный тематический письменный контроль |