Высшее профессиональное образование т. Я. Дубнищева концепции современного естествознания

Вид материалаДокументы

Содержание


1.8. Современная научно-техническая революция: достижения и проблемы
Вопросы для самопроверки и повторения
Понятия пространства, времени
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   53
1.7. Оценки научных успехов и достижений

Ученых в служении миру и прогрессу объединяют общие принципы познания законов природы и общества, хотя наука XX в. сильно дифференцирована. Крупнейшие достижения человеческого разума обусловлены обменом научной информацией, переносом результатов теоретических и экспериментальных исследований из одной области в другую. От сотрудничества ученых разных стран зависит прогресс не только науки и техники, но и человеческой культуры и цивилизации в целом. Феномен XX в. в том, что число ученых за всю предшествующую историю человечества составляет лишь 0,1 от работающих в науке сейчас, т. е. 90 % ученых — наши современники. И как оценить их достижения? Различные научные центры, общества и академии, многочисленные научные комитеты разных стран и различные международные организации отмечают заслуги ученых, оценивая их личный вклад в развитие науки и значение их научных достижений или открытий. Существует множество критериев для оценки важности научных работ. Конкретные работы оценивают по количеству ссылок на них в работах других авторов или по числу переводов на другие языки мира. При таком методе, который имеет много недостатков, существенную помощь оказывает компьютерная программа по «индексам цитируемости». Но этот или аналогичные методы не позволяют увидеть «леса за отдельными деревьями». Существует система наград — медалей, премий, почетных званий в каждой стране и в мире.

Среди самых престижных научных наград — премия, учрежденная 29 июня 1900 г. Альфредом Нобелем. По условиям его завещания премии должны присуждаться 1 раз в 5 лет лицам, которые сделали в предшествующем году открытия, внесшие принципиальный вклад в прогресс человечества. Но награждать стали и за работы или открытия последних лет, важность которых была оценена недавно. Первая премия в области физики была присуждена В. Рентгену в 1901 г. за открытие, сделанное 5 лет назад. Первым лауреатом Нобелевской премии за исследования в области химической кинетики стал Я.Вант-Гофф, а в области физиологии и медицины — Э. Беринг, ставший известным как создатель противодифтерийной антитоксичной сыворотки.

Многие отечественные ученые также были удостоены этой престижной премии. В 1904 г. лауреатом Нобелевской премии по фи-

37

зиологии и медицине стал И. П. Павлов, а в 1908 г. — И. И. Мечников. Среди отечественных Нобелевских лауреатов — академик Н.Н.Семенов (совместно с английским ученым С.Хиншельвудом) за исследования механизма цепных химических реакций (1956); физики И.Е.Тамм, И.М.Франк и П.А.Черенков — за открытие и исследование эффекта сверхсветового электрона (1958). За работы по теории конденсированных сред и жидкого гелия Нобелевская премия по физике была присуждена в 1962 г. академику Л. Д.Ландау. В 1964 г. лауреатами этой премии стали академики Н. Г. Басов и А. М. Прохоров (совместно с американцем Ч. Таунсом) за создание новой области науки — квантовой электроники. В 1978 г. Нобелевским лауреатом стал и академик П. Л. Капица за открытия и основополагающие изобретения в области низких температур. В 2000 г., как бы завершая век присуждения Нобелевских премий, академик Ж.И.Алферов (из Физико-технического института им. А.Ф.Иоффе, Санкт-Петербург, Россия) и Г.Кремер (из Калифорнийского университета, США) стали Нобелевскими лауреатами за разработку полупроводниковых гетерострук-тур, используемых в высокочастотной электронике и оптоэлект-ронике.

Присуждение Нобелевской премии осуществляет Нобелевский комитет Шведской академии наук. В 60-е годы деятельность этого комитета была подвергнута критике, поскольку многие ученые, достигшие не менее ценных результатов, но работающие в составе больших коллективов или опубликовавшиеся в «непривычном» для членов комитета издании, не стали лауреатами Нобелевской премии. Например, в 1928 г. индийские ученые В. Раман и К. Кришнан исследовали спектральный состав света при прохождении его через различные жидкости и наблюдали новые линии спектра, смещенные в красную и синюю стороны. Несколько раньше и независимо от них аналогичное явление в кристаллах наблюдали советские физики Л.И.Мандельштам и Г.С.Ландсберг, опубликовав свои исследования в печати. Но В. Раман послал короткое сообщение в известный английский журнал, что обеспечило ему известность и Нобелевскую премию в 1930 г. за открытие комбинационного рассеяния света. В течение века исследования становились все более крупными и по количеству участников, поэтому присуждать индивидуальные премии, как это предусматривалось в завещании Нобеля, стало труднее. Кроме того, возникли и развились области знаний, не предусмотренные Нобелем.

Организовались и новые международные премии. Так, в 1951 г. была учреждена Международная премия А. Галабера, присуждаемая за научные достижения в освоении космоса. Ее лауреатами стали многие советские ученые и космонавты. Среди них — главный теоретик космонавтики академик М. В. Келдыш и первый космонавт Земли Ю.А.Гагарин. Международная академия астронавтики учредила свою премию; ею отмечены работы М. В. Келдыша, О.Г.Газенко, Л.И.Седова, космонавтов А.Г.Николаева и

38

В. И. Севастьянова. В 1969 г., например, Шведский банк учредил Нобелевскую премию по экономическим наукам (в 1975 г. ее получил советский математик Л.В.Канторович). Международный математический конгресс стал присуждать молодым ученым (до 40 лет) премию имени Дж. Филдса за достижения в области математики. Этой престижной премии, присуждаемой раз в 4 года, были удостоены молодые советские ученые С. П. Новиков (1970) и Г.А. Маргулис (1978). Многие премии, присуждаемые различными комитетами, приобрели в конце века статус международных. Например, медалью У. Г. Волластона, присуждаемой Лондонским геологическим обществом с 1831 г., были оценены заслуги наших геологов А. П. Карпинского и А. Е. Ферсмана. Кстати, в 1977 г. фонд г. Гамбурга учредил премию А. П. Карпинского, русского и советского геолога, президента Академии наук СССР с 1917 по 1936 г. Эта премия присуждается ежегодно нашим соотечественникам за выдающиеся достижения в области естественных и общественных наук. Лауреатами премии стали выдающиеся ученые Ю. А. Овчинников, Б. Б. Пиотровский и В. И. Гольданский.

В нашей стране самой высокой формой поощрения и признания научных заслуг являлась Ленинская премия, учрежденная в 1957 г. До нее была премия им. Ленина, просуществовавшая с 1925 по 1935 г. Лауреатами премии им. Ленина стали А. Н. Бах, Л. А. Чугаев, Н.И.Вавилов, Н.С.Курнаков, А.Е.Ферсман, А.Е.Чичибабин, В.Н.Ипатьев и др. Ленинской премии были удостоены многие выдающиеся ученые: А.Н.Несмеянов, Н.М.Эмануэль, А.И.Опарин, Г.И.Будкер, Р.В.Хохлов, В.П.Чеботаев, В.С.Летохов, А. П. Александров, Ю. А. Овчинников и др. Государственные премии СССР присуждались за исследования, вносившие крупный вклад в развитие науки, и за работы по созданию и внедрению в народное хозяйство наиболее прогрессивных и высокотехнологичных процессов и механизмов. Сейчас в России существуют соответствующие премии Президента и правительства Российской Федерации.

1.8. Современная научно-техническая революция: достижения и проблемы

Современную эпоху называют эпохой научно-технической революции (НТР). Это значит, что наука превратилась в ведущий фактор развития общественного производства и всей жизни общества, стала непосредственной производительной силой. Если обратиться к началу XX в., когда были сделаны крупные открытия в науке и технике, то можно проследить процесс подготовки НТР. За четверть века в физике был открыт электрон, раскрыта сложная структура атома, установлен корпускулярно-волновой

39

дуализм света и вещества, открыты явления естественной и искусственной радиоактивности, созданы квантовая механика, теория относительности. В жизни стали широко использовать электричество, механизацию и автоматизацию производства; развились средства связи, появились радио и телевизор, автомобиль, самолет, электропоезд; развивались новые источники энергии. Успехи в химии и биологии привели к разработке технологий органических веществ и методов управления химическими процессами, в частности синтеза многих лекарств, взрывчатых веществ, красителей, продуктов питания, а также к получению новых веществ с заданными свойствами. Появились науки — генетика, молекулярная биология, кибернетика.

В середине XX в. научно-технический прогресс стал оказывать решающее влияние на мировую политическую жизнь. Создание атомной бомбы показало, что овладение достижениями науки и передовыми технологиями определяет судьбы стран и человечества. Следующая веха НТР — овладение космосом: создание искусственных спутников, полет Ю. А. Гагарина, исследование космическими аппаратами других планет, выход человека в открытый космос и на Луну. Человечество осознало свое единство. Как выразился известный физик В.Гейзенберг, «...интересовались не природой как она есть, а, прежде всего, задавались вопросом, что с ней можно сделать. Естествознание поэтому превратилось в технику. Точнее, оно соединилось с техникой в единое целое». Эта связь с техникой и выражается в самом термине НТР. Появление и массовое распространение ЭВМ, которым человек может передать свои логические функции и постепенно ряд функций по автоматизации производства, контролю и управлению, привели к впечатляющему рывку вперед во многих областях жизни — в сферах производства, образования, бизнеса, науки и социальной жизни. Произошло резкое изменение всего строя жизни одного поколения человечества: открываются и используются новые виды энергии, электронное приборостроение, биотехнологии; перестраивается весь технологический базис производства и управления, меняется отношение человека к ним, создается и укрепляется единая система взаимодействия человека и природы — наука, техника, производство.

ВконцеХХв. продукция высоких технологий занимает все большее место в валовом продукте развитых стран, обеспечивая его прирост; их развитость определяет положение государства в современном мире. Поэтому большинство стран мира прилагают максимум усилий к укреплению научно-технического потенциала, расширению инвестиций в наукоемкие технологии, участию в международном технологическом обмене, ускорению темпов научно-технического развития. Экономический рост отождествляется с научно-техническим прогрессом и интеллектуали-

40

зацией основных факторов производства. Новые производства требуют высочайшей точности, надежности и стабильности. Малое нарушение или оплошность могут стать причиной срыва всего производства или катастрофы, потому так высоки требования к квалификации и надежности персонала. Высокотехнологичные направления объединяют микроэлектронику, информационные и биотехнологии. Распространение высоких технологий и выросшая доля стоимости научных исследований в цене продукта (наукоем-кость) повысили требования к уровню подготовленности участников производства.

Кроме того, резко сократилось время между проведением научного исследования и его внедрением; при этом часто используются объекты, изученные не досконально, которые трудно представить на основе предыдущего опыта. Отсюда — совершенно иное отношение к науке. Несмотря на большую долю риска, высока возможная прибыль. И правительства многих развитых стран, и крупные фирмы вкладывают деньги в научные исследования; создаются венчурные (от франц. overture — риск, авантюра) фирмы, привлекающие мелких вкладчиков. Это оказывает пользу развитию науки, так как ей требуются дорогостоящее оборудование, развитая инфраструктура, высокая степень информатизации, высококвалифицированный персонал и пр. Но сращивание науки с бизнесом имеет и негативные последствия — служение Истине отступает на второй план, меняется научная этика. Изменилось и мировоззрение людей.

Информация к началу XXI в. стала стратегическим ресурсом общества (как продукты питания, промышленные или энергоресурсы). Произошла смена доминирующего вида деятельности в сфере общественного производства (сначала от аграрной к индустриальной, а затем — к информационной). Роль науки в обществе сильно возросла, оказывая огромное влияние на мировоззрение. Но и мировоззрение все более влияет на экономику, политику, социальную жизнь. В условиях исчерпания возможностей экстенсивного развития человечество снова осознало свое единство. Но нарастают и глобальные проблемы, которые могут быть решены только общими усилиями (ядерное разоружение, экология, безопасность, строительство и поддержание глобальной информационной и коммутационной инфраструктуры). Высокий профессионализм неотделим от нравственности, гуманизма, цельного видения единства и взаимосвязи природы и общества, Человека и Космоса.

Меняются отношения человека с природой и людей друг с другом. Жизнь стала продолжительней и комфортней. Бытовая техника оснащается микропроцессорами, по Интернету можно общаться, учиться, покупать товары и др. За счет автоматизации и роботизации деятельности человек вытесняется из производства, растет доля творческого труда, общество должно непрерывно обу-

41

чаться новому, стать «обучающимся обществом». Человек стал более свободным, но он еще не готов с пользой для себя и общества использовать тот материальный достаток и досуг, который дала ему НТР. Удобства жизни отделяют людей друг от друга; разработка новых достижений НТР происходит за счет развития узкой специализации; усиливается давление на окружающую среду. Быстрый темп развития и высокая сложность этих отраслей привели к необходимости компьютеризации и автоматизации самих технологических процессов, их проектирования, хранения и транспортировки сырья и продукции, непрерывного изучения рынка сбыта и т.п.

Увеличение численности высококвалифицированных специалистов становится главной формой накопления в современной экономике, а люди, их разум — самым ценным стратегическим ресурсом, за которые идет конкурентная борьба, не уступающая по накалу борьбе за сырьевые ресурсы. И если страна не способна финансировать научные исследования, разработку и развитие наукоемких технологий, она рискует «отстать навсегда». Представление о науке как о непосредственной производительной силе — это дань возрастающей роли научного труда в совокупном общественном продукте. Сейчас на долю новых знаний, воплощаемых в технологиях, оборудовании и организации производства, в развитых странах приходится от 70 до 85 % прироста ВВП, а на долю семи высокоразвитых стран — 80—90 % наукоемкой продукции и весь ее экспорт. Правительства не могут принимать важных решений без консультаций со специалистами и, прежде всего, с учеными-естественниками.

Наука может дать человеку знания, как осуществить контроль за состоянием окружающей природы, как лучше организовать производство, как обеспечить себя энерго- и ресурсосберегающими технологиями, как обеспечить безопасность народов, но не может ограничить рост потребления одного за счет другого.

Простейший пример — автомобильный транспорт. Автомобильные выхлопы — один из главных источников кислотных дождей. Но переход на иное топливо или даже ограничение скорости движения автомобилисты не поддерживают, и правительства не принимают соответствующие жесткие законы. Также ни один предприниматель не уменьшит свою прибыль от производства, потратив средства на очистительные сооружения, если власть не примет соответствующие законы.

Поэтому первостепенное значение приобретают подготовка общественного сознания к правильному восприятию достижений НТР, разработка грамотных законов, разумно ограничивающих потребление, повышение уровня компетентности управляющих и правящих. Фундаментальная наука относится к высшим духовным ценностям человечества и несет в себе объединительное начало. В заключение приведем слова Нобелевского лауреата

42

И.П.Павлова, сказанные еще в начале XX в.: «Что нам, русским, нужно сейчас в особенности — это пропаганда научных стремлений, обилие научных средств и страстная научная работа. Очевидно, наука становится главнейшим рычагом жизни народов, без нее нельзя удержать ни самостоятельности, ни тем более достойного положения в мире».

Вопросы для самопроверки и повторения
  1. Как формировалось представление о критерии истинности знания?
  2. Каковы отличия научного познания от вненаучного? Чем отличаются естественно-научная и гуманитарная культуры? Чем отличается естественно-научный подход от философского?
  3. Какие общенаучные методы используются в естествознании? Дайте определение понятиям «мысленный эксперимент» и «модельный эксперимент» и приведите примеры.
  4. Какова последовательность этапов развития научного знания? Чем отличается дисциплинарный подход от междисциплинарного?
  5. Назовите этапы развития естествознания.
  6. Дайте определение понятию «научная революция» и приведите примеры.
  7. Дайте определение понятию «научная картина мира» и приведите пример смены картин мира.
  8. Охарактеризуйте свойства систем и системный подход.
  9. Дайте определение понятию НТР и сформулируйте ее проблемы.

10. Дайте определение понятию «научная программа» и покажите,
как менялись в истории естествознания стратегии познания.

Глава 2

ПОНЯТИЯ ПРОСТРАНСТВА, ВРЕМЕНИ

И МАТЕРИИ. ФУНДАМЕНТАЛЬНЫЕ

ВЗАИМОДЕЙСТВИЯ

2.1. Понятие «пространство»

В обыденном восприятии под пространством понимают некую протяженную пустоту, в которой могут находиться какие-либо предметы. Однако между небесными телами есть некоторое количество вещества, да и физический вакуум содержит виртуальные частицы. В науке пространство рассматривается как физическая сущность, обладающая конкретными свойствами и структурой.

Пространство и время — всеобщие и необходимые объективные формы бытия материи. «В мире, — писал В. И.Ленин, — нет ничего кроме движущейся материи, а движущаяся материя не может двигаться иначе чем в пространстве и времени». Материя объективно существует в форме вещества и поля, образует Вселенную, существующую независимо от того, ощущаем мы ее или нет.

Основные свойства пространства формировались по мере освоения человеком территорий и развития геометрии (от греч. geometria — землемерие). Сложившиеся к III в. до н. э. знания систематизировал древнегреческий математик Евклид. В своем знаменитом произведении «Начала», состоящем из 15 книг, ставшем основой геометрии, он организовал научное мышление на основе логики. В первой книге Евклид определил идеальные объекты геометрии: точка, прямая линия, плоскость, поверхность.

Эти объекты рассматривались через некоторые характеристики реального окружающего мира или каких-либо предметов, часто для этого использовались представления о луче света или натянутой струне. Например, образ прямой линии связан с лучом света. Но было известно, что в неоднородных средах световой луч преломляется; и сам же Евклид получил закон равенства углов отражения и падения, а Аристотель рассуждал о кажущемся преломлении палки, погруженной частично в воду. Исходя из наиболее простых свойств линий и углов Евклид путем строгих логических доказательств пришел в планиметрии к формулировке условий равенства треугольников, равенства площадей, теореме Пифагора, к золотому сечению, кругу и правильным многоугольникам. В книгах V—VI и X он излагает теорию несоизмеримых Евдокса и правила подобия, VII—IX — теорию чисел, а в последних трех — геометрию в пространстве. От телесных углов, объемов параллелепипедов, призм, пирамид и шара Евклид переходит к исследованию пяти правильных («Платоновых») тел и доказательству, что их существует только пять.

44

Изложение Евклида построено в виде строго логических выводов теорем из системы аксиом и постулатов (кроме системы определений). Согласно им и определены основные представления о пространстве, которые использованы И. Ньютоном в его «Математических началах натуральной философии» (1687):

однородность — нет выделенных точек пространства, параллельный перенос не изменяет вид законов природы;

изотропность — в пространстве нет выделенных направлений, и поворот на любой угол сохраняет неизменными законы природы;

непрерывность — между двумя различными точками в пространстве, как близко бы они не находились, всегда есть третья;

трехмерность — каждая точка пространства однозначно определяется набором трех действительных чисел — координат;

«евклидовость» — описывается геометрией Евклида, в которой, согласно пятому постулату, параллельные прямые не пересекаются или сумма внутренних углов треугольника равна 180°.

Пятый постулат геометрии Евклида привлекал к себе особое внимание, и некие его эквиваленты привели в XIX в. к возможности иных геометрий, в которых сумма углов треугольника больше (геометрия Римана — геометрия на сфере) или меньше 180° (геометрии Лобачевского и Больяйи).

Положение тел в окружающем пространстве определяется тремя координатами (долгота, широта, высота), т.е. наглядным представлениям соответствует трехмерность пространства. Птолемей в своем труде «Альмагест» утверждал, что в природе не может быть более трех пространственных измерений. Для определения положения в пространстве Р.Декарт обосновал единство физики и геометрии. Развив идею близкодействия, он объяснял все явления природы механическим взаимодействием частиц, он запомнил мир тонкой материей — эфиром. Он ввел прямоугольную систему координат («декартовы координаты») — х, у, z. Для описания орбит планет при их движении вокруг Солнца удобнее сферическая система координат, вьщеляющая положение Солнца и учитывающая, что гравитационное поле убывает одинаково по всем направлениям. Выбор системы координат — это просто выбор способа описания, и он не может влиять на свойства континуума, который нужно описать. Пространства и континуумы независимо от способа описания обладают своими внутренними геометрическими свойствами (например, кривизной). Пространство называют искривленным, если в него невозможно ввести координатную систему, которая может считаться прямолинейной. Иначе — оно плоское.

Физический мир Декарта состоит из двух сущностей: материи (простой «протяженности, наделенной формой») и движения. Поскольку