Высшее профессиональное образование т. Я. Дубнищева концепции современного естествознания

Вид материалаДокументы

Содержание


Статистические методы
Системный подход
1.4. Понятия «научная программа» и «научная картина мира»
Научная картина мира (НКМ)
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   53
Наблюдения еще не связаны с какой-либо теорией, но формулировка вопросов вызвана какой-то проблемной ситуацией. Наблюдение предполагает наличие определенной программы исследования, какой-то пробной гипотезы, подвергаемой анализу и проверке. На наблюдениях и аналогиях строилась натурфилософия. Наблюдения и ныне — начальный источник информации, целенаправленный процесс восприятия предметов или явлений. Они используются там, где нельзя поставить прямой эксперимент, например в вулканологии или космологии. Каждая наука использует свои методы познания мира в зависимости от характера решаемых задач. Сначала на опытной стадии за систематическими наблюдениями следует специально поставленный эксперимент, в котором производятся измерения. Сравнение и измерение — частные случаи наблюдения.

Как метод научного познания анализ — одна из начальных стадий исследования, когда от цельного описания объекта переходят к его строению, составу, признакам и свойствам; он основан на мысленном или реальном расчленении предмета на части. Синтез заключается в соединении различных элементов предмета в единое целое и обобщении выделенных и изученных особенностей объекта; результаты синтеза входят в теорию объекта, определяющую пути дальнейших исследований. Индукция состоит в формулировании логического умозаключения на основе обобщений данных эксперимента и наблюдений. Эти обобщения рассматриваются как эмпирические законы. Логические рассуждения идут от частного к общему, обеспечивая лучшее осмысление и переход на более общий уровень рассмотрения проблемы.

20

Индуктивный метод используют при решении задач, связанных с систематизацией, классификацией, научным обобщением. Дедукция — метод познания, состоящий в переходе от некоторых общих положений к частным результатам. Этим методом выявляют конкретное содержание выдвинутых предположений или гипотез. Дедуктивный метод лежит в основе современных методологий (например, системного анализа). Гипотеза — предположение или предсказание, выдвигаемое для разрешения неопределенной ситуации. Она должна объяснить или систематизировать некоторые факты, относящиеся к данной области знания или находящиеся за ее пределами, но не должна противоречить уже существующим. С гипотезой имеет сходство аналогия.

При количественном сопоставлении исследуемых свойств, параметров объектов или явлений говорят о методе сравнения. В некотором смысле метод сравнения противоположен методу аналогии, поскольку выделяет отличия. Метод сравнения составляет основу любых измерений, т.е. основу всех экспериментальных исследований и науки в целом.

Гипотеза должна быть подтверждена или опровергнута. Процесс установления истинности гипотезы на опыте называют верификацией. Если опыт не опровергает гипотезу, должна быть выдвинута альтернативная гипотеза. Так, гипотеза М. Планка о квантовом характере испускания света привела к созданию квантовой механики; гипотезы де Бройля (корпускулярно-волновой дуализм материи) и Н.Бора (модель строения атома) обобщали многие факты и потом были подтверждены. Гипотеза Г. Гельм-гольца о дальнодействующем характере электрических явлений была опровергнута экспериментом Герца, обнаружившим ток смещения, отделившийся от источника тока. Это подтвердило введение Дж. Максвеллом тока смещения в уравнения поля из соображений симметрии.

Эксперимент, поставленный вслед за наблюдениями, уже выделяет интересующее явление среди других; предполагает опытное определение параметров исследуемых явлений или объектов. Галилей проверял гипотезы экспериментом, производил измерения и обрабатывал результаты математически. Измерения позволяют поставить физическим величинам в соответствие некоторые числа. С той поры, названной Новым временем, измерения проводятся более точно, их результаты обрабатываются специальными вычислительными приемами, да и сами эксперименты усложнились технически. И многие науки изменили свой облик.

Из предварительной гипотезы путем логики выводят следствия, которые и проверяют с помощью наблюдений и экспериментов. Но все измерения проводятся с определенной точностью, и, как выяснилось в XX в. при изучении микромира, не всегда ее можно повысить и не всегда условия эксперимента можно точно повто-

21

рить. Меняется и понятие средней величины. Если над телами сложно или невозможно провести эксперимент, все чаще пользуются косвенными экспериментами.

Создание моделей — основа многих научных концепций, адекватность моделей подтверждается опытом или практикой. Моделирование обычно упрощает изучаемое природное явление, касаясь лишь некоторых его сторон. Иначе, по мнению одного из основоположников кибернетики, английского математика А.Тьюринга, сложность изучения идентичной объекту модели будет соответствовать сложности самого объекта исследования. Физическое моделирование опыта широко применяют в гидро- и аэродинамике, где разработаны соотношения подобия для тех или иных потоков. Помимо модельного эксперимента в этих случаях проводят мысленный эксперимент. В таких экспериментах оттачивается представление об идеальной модели явления; они имели место в рассуждениях Г. Галилея, И. Ньютона, А. Эйнштейна. Распространено и математическое моделирование, предполагающее формирование систем уравнений, которые описывают исследуемое природное явление, и их решение при различных начальных или граничных условиях. В последнее время в эти уравнения вводят вероятностные оценки некоторых параметров, изменяемых случайным образом. Такие уравнения решают с помощью компьютерной техники. Иногда данные методы называют вычислительным экспериментом или имитационным математическим моделированием.



Обращение к теории как к более высокому уровню научного исследования завершает научные исследования. На этой стадии прибегают к формированию понятий и абстракций, строят теории и новые гипотезы, и, проверяя экспериментально выводы из них, приходят к формулировке законов природы. Но не всякое подтверждение гипотезы опытом подтверждает ее истинность. Поэтому необходимо найти много следствий гипотезы или теории, которые подтверждаются опытом (рис. 1.1). В естествознании результаты эксперимента — решающий аргумент признания теории. В основе методов естествознания — единство эмпирической и теоретической сторон. Они взаимно связаны и взаимообусловлены. Методы разделяют на три группы:

22

общие, касающиеся любой науки, — фактически общефилософские методы познания природы. Эти методы могут связывать все стороны процесса познания (например, единство логического и исторического или восхождения от абстрактного к конкретному);

особенные, связанные лишь с какой-то одной стороной изучаемого предмета (например, анализ, синтез, дедукция, индукция, измерение, сравнение, эксперимент);

частные, действующие в определенной области знаний.

Но в процессе развития науки научные методы могут переходить из одной группы методов в другую. Например, многие частные методы физики перешли в другие области знаний и привели к созданию биофизики, физической химии, геофизики, астрофизики и др. Многие методы химии используют как в биологии, так и в физике. Законы термодинамики дали основу понимания хода химических реакций. Впоследствии термодинамика охватила теорию упругости, учение об электричестве и магнетизме, возникла теория электролитической диссоциации. Создание молекулярной биологии, изучающей проявление жизни на молекулярном уровне, отражает понимание того, что многие важные процессы, считавшиеся монополией биологии (дыхание, ощущение, раздражение), являются химическими процессами. Химическую природу имеет и процесс деления клетки. Но жизнь не сводится к физико-химическим процессам. Физики расшифровали рентгенограммы молекулы ДНК и сумели проникнуть в самые сложные тайны жизни.

Статистические методы, позволяющие получить средние значения измеряемых величин для общей характеристики изучаемых явлений, получили широкое распространение. Изобретение Ньютоном и Лейбницем дифференциального и интегрального исчислений, развитие методов статистической обработки результатов опыта способствовали использованию математики во всех областях естествознания. Была «непостижима эффективность применения математики», но по ее законам были «на кончике пера» открыты планеты Нептун и Плутон, ток смещения в уравнениях Максвелла, электромагнитная природа света, нестационарность модели Вселенной А. Фридмана, обнаружено красное смещение в спектрах далеких галактик и многое другое. Природа таких математических предсказаний реальности вызывает многочисленные философские дискуссии.

Развитие математики и появление ЭВМ позволили решать невероятно сложные нелинейные уравнения теории с огромным числом взаимосвязанных параметров. Такие уравнения описывают сложные системы, более реальные, чем идеальные модели классической науки. Созданы совершенно новые разделы математики — кибернетика, теория катастроф и др. И от статических моделей систем, находящихся почти в равновесии, переходят к

23

моделированию сложных систем в далеких от равновесия состояниях. Широко используют понятия случайности, вероятности, выбора варианта развития, эволюции, скачкообразных переходов. Необратимость процессов, существование обратных связей и нелинейность стали главными доминантами современного описания процессов.

Системный подход используют, когда каждое явление или предмет рассматривается как часть целостного организма. Взаимодействие частей друг с другом придает системе свойства, которых нет у ее отдельных элементов. Это свойство систем называют эмерджентностью, и оно фактически является определяющим для системы. Все компоненты системы находятся в тесной взаимосвязи. Совокупность этих взаимосвязей и взаимодействий, обеспечивающую возникновение целостных свойств всей сложной системы, называют ее структурой. Выделение системы из других, с которыми она взаимодействует непосредственно, приводит к понятию окружающей среды. Второе важное свойство систем — иерархичность любого системного образования, т.е. существование различных взаимосвязанных структурных уровней рассмотрения систем. Строение системы определяется ее компонентами — подсистемами и элементами. Так, живой организм состоит из пищеварительной, нервной, дыхательной и других подсистем; подсистемы — из органов, органы — из тканей, ткани .— из клеток, клетки — из молекул. По подобному иерархическому принципу построены многие системы.

Третьим важнейшим свойством систем является их открытость, т. е. степень связанности с внешней средой. Все реальные системы в природе являются открытыми т. е. взаимодействующими с окружающей средой путем обмена веществом, энергией или информацией. Последний обмен имеет место в живых, социально-экономических и других системах. При полном отсутствии связей с окружающей средой говорят о том, что система изолирована, и никакое взаимодействие с ней невозможно в принципе. Поскольку это представление абстрактно, можно говорить лишь о степени изолированности системы от окружающей среды. Если внешний мир влияет на систему, а система не откликается на внешнее воздействие, то ее называют закрытой. Полная определенность и предсказуемость описания и поведения систем характеризуется детерминированностью. Это свойство является некоей удобной при расчетах идеализацией, поскольку все явления обладают стохастично-стью (вероятностным характером протекающих процессов).

Стационарность — следующее важное свойство систем. Стационарны системы, параметры которых не меняются во времени. Но таких систем в природе тоже не бывает (за исключением внутренних областей звезд типа черных дыр), поэтому определяют интервал времени, в течение которого система может

24

считаться стационарной. Большинство систем являются нестационарными.

Устойчивость отражает свойство системы возвращаться в равновесное состояние после прекращения внешних воздействий. Это свойство может исчезать при изменении внешних условий или самой системы. Поэтому приобрело большое значение определение границ устойчивости систем. Вблизи этих границ система находится в неравновесном состоянии, что может служить одним из условий возникновения в ней перестройки и появления самоорганизации и являться, в свою очередь, основой для системной эволюции.

При различных нестационарных процессах может проявляться другое свойство систем — колебательность, или способность систем к периодическому изменению своих параметров при приближении к новому состоянию. В некотором роде это свойство связано с консерватизмом систем. Свойство систем сопротивляться воздействию окружающей среды характеризуется инерционностью. Инерционность отражает консерватизм природы и присуща всем системам, хотя и в разной степени. Мерой инерционности в механике служит масса, в электродинамике — индуктивность, в биологии — наследственность. Эти последние два свойства выделяются как динамические среди прочих общесистемных свойств.

Фундаментальная роль системного подхода заключается в его междисциплинарности, с его помощью единство знания достигается наиболее полно. Системный подход дает возможность рассматривать проблему как бы сверху, с более высокого уровня системной иерархии; решать сложную проблему как систему в целом, во взаимосвязи ее с другими проблемами и большим числом внешних и внутренних связей. Это позволяет выбрать наиболее оптимальный путь решения проблемы, реализуя общенаучный метод дедукции, — от общего рассмотрения сложной проблемы к частному оптимальному ее решению. Возможность использовать общий подход к процессам управления в системах различной природы ненова, этим занимается кибернетика. В ней создан мощный аппарат количественного описания процессов, основанный на методах теории информации, теории динамических систем, теории алгоритмов и теории вероятностей. Рассмотрение управляемых систем в развитии изменило подходы к их изучению. Управляющие воздействия могут переводить управляемую систему в одно из возможных состояний, появляется выбор возможного изменения, а потенциальной возможностью к управлению обладают организованные системы. Так, на первый план вышли проблемы устойчивости систем, наличие прямых и обратных связей. О важности проблем, решаемых методами системного анализа, свидетельствует факт создания в Российской академии наук специаль-

25

ного Института системного анализа. Использование системного подхода не только в естествознании, но и в общественных науках имеет большое мировоззренческое значение.

«Попытка понять Вселенную — одна из вещей, которые приподнимают человеческую жизнь над уровнем фарса и придают ей черты высокой трагедии», — писал американский физик, лауреат Нобелевской премии Стивен Вайнберг. Потому проблемы мироздания так притягивают к себе, заставляя разбираться в огромном числе разных фактов, наблюдений и связывать их воедино. Фундаментальная наука влечет людей по разным причинам. Это и наслаждение удовлетворением собственного любопытства, и осознание своего вклада в человеческую культуру, и священное чувство приобщения к великому наследию многих поколений великих ученых.

Культурная ценность науки — основной движущий мотив труда ученых. Потребность создать гармоничную картину мира и осознать свое место в нем имеет всеобщий универсальный характер. Ради этой цели общество выбрало путь рационального объяснения природы. Сам процесс научной работы, изучение экзотических и казалось бы, далеких от нас областей микро- и макромира отражают рационалистический подход к восприятию мира, присущий обществу. Открываются удивительные взаимосвязи: в далеком космосе найдены органические молекулы, а изучение нейтринных пучков, получаемых на ускорителях, меняет взгляды на эволюцию Вселенной. Они показывают единство мира природы. Эти представления являются общими для разных культур, основы их идут от философов Древней Греции — Природа экономна, в ней действуют единые законы. Представление об единстве науки способствовало укреплению веры в единство человечества.

Понимания Вселенной мы, возможно, могли бы достичь, если бы сумели свести наблюдаемые факты к простейшим понятиям, пользуясь небольшим числом фундаментальных частиц и фундаментальных взаимодействий, в которые они могли бы вступать.

1.4. Понятия «научная программа» и «научная картина мира»

Понятие «научная программа» сформировалось в методологии науки. Научная программа (НП), включающая в себя систему единых принципов, претендует на всеобщий охват и объяснение всех явлений. В отличие от философской системы она определяет не только характеристику предмета исследования, но и возможность методов проверки заявленных принципов, без чего они не станут теорией. Во всякой теории много допущений, принимаемых на веру, причем их изменения могут вызвать пересмотр или даже

26

отмену теории. Ф. Энгельс писал: «...философия каждой эпохи располагает в качестве предпосылки определенным мыслительным материалом, который передан ей предшественниками». Научные программы связывают научные картины мира (НКМ) с умонастроениями в обществе, задают идеал научного объяснения и организации знания, положения, которые считают доказанными или достоверными. Связь эволюции науки с материальной и духовной культурой общества отражена в том, что научные революции не вытекали из логики развития науки. Изменение НКМ и НП перестраивают весь стиль научного мышления и вызывают изменения в характере научных теорий. Например, первая теория эволюции была выдвинута Ж.Б.Ламарком за 50 лет до Дарвина, но в науке не укрепилась и не потому, что была слабо доказательна. Причина — в неподготовленности умов к ее восприятию.

Сложившиеся в науке представления оказывают через мировоззрение влияние на жизнь общества. Исследование трансформации НП при смене культур важно для развития и общества, и науки.

Первые научные программы сформировались в Древней Греции с VI по III в. до н. э. и надолго определили развитие науки. К ним относятся математическая, континуальная и атомистическая НП. Каждая программа формировалась в несколько этапов.

Математическая программа выросла из философии Пифагора и Платона, континуальная — началась с Аристотеля, с его физической школы перипатетиков, и просуществовала до науки Нового времени, т. е. почти 20 веков. Атомистическая программа, идущая от представлений Демокрита и Эпикура, стала активно развиваться после XVII в. Но ранние пифагорейские представления отличны от программы Платона. Данные изменения связаны с развитием общества за 300 лет. За это время произошел перелом в мышлении, связанный с философией эгейской школы, когда возникли первые (из известных нам) попытки критики оснований знания. Изменения в социальной жизни Эллады существенно повлияли на общемировоззренческие ориентиры ученого, на его понимание природы и места человека в ней, а отсюда и на научное мышление, на методы исследований и формирование идеалов и норм научного познания. Этический индивидуализм («индивидуум» — латинский перевод греческого «атом») и естественно-научный атомизм в XVII—XVIII вв. воспринимались как две стороны одного мировосприятия: самостоятельные индивиды (атомы, корпускулы) управляются механическим образом и регулируются жестким внешним законом. И механическая картина мира с законом тяготения Ньютона рассматривалась экономистами как природное обоснование экономических учений. Так, Адам Смит считал, что частнопредпринимательский интерес соответствует моральной гравитации.

Поскольку материальный мир един и подчиняется простым законам, не имеет цели развития, не способен ставить человеку цели, человек обретает свободу выбора цели сам. И наибольшей ценностью данной программы являлось ее нравственное значение, а вовсе не эффективность решения научных или практических задач. В мире атомистической

27

программы человек мог свободно действовать, отвечая за последствия своих деяний, он стал полновластным хозяином вещей. Идея механистичности природы связана у Р.Бойля, Р.Декарта и других мыслителей и ученых XVII в. с признанием уникальности человека и ответственности его как единственного сознательного начала в природе. Именно человеку вменена «обязанность» заботы о ее спасении и дано право познавать природу и господствовать над нею. Эта позиция отвечала потребностям материального производства периода раннего капитализма, она формировала иное поведение и обосновывала его.

Научная картина мира (НКМ) — общая система представлений и понятий в процессе формирования естественно-научных теорий. Наука античности особо ценила математику, но считала ее применимой только к «идеальным» небесным сферам, а для описания земных явлений использовала качественные «правдоподобные» описания. Обращение к опыту подразумевало и иное, более активное отношение к природе. Вселенная классической науки стала объединяться едиными законами движения, к механике сводились все процессы в мире, из научного миросозерцания были изгнаны «цели» и «целеполагания», понятия механики приобрели общезначимость.

Переход к экспериментальному естествознанию и математическая обработка результатов экспериментов позволили Г. Галилею открьпъ законы падения тел, отличные от аристотелевых. Опора на полученные из наблюдений результаты изменила представления о движении и на небе — И.Кеплер открыл новые законы движения планет. Создание математического анализа позволило Ньютону сформулировать законы механики и закон всемирного тяготения. Он писал: «Как в математике, так и в натуральной философии исследование трудных предметов методом анализа всегда должно предшествовать методу соединения. Такой анализ состоит в производстве опытов и наблюдений, извлечении общих заключений из них посредством индукции и недопущении иных возражений против заключений, кроме полученных из опыта или других достоверных истин. Ибо гипотезы не должны рассматриваться в экспериментальной философии... Путем такого анализа мы можем переходить от соединений к инградиентам, от движений — к силам, их производящим, и вообще от действий — к их причинам, от частных причин — к более общим, пока аргумент не закончится наиболее общей причиной». И механика стала доминантой естествознания.