Жизнь человека с самого начала складывалась так, что все, чем бы он не занимался, заставляло его наблюдать за окружающим миром и делать из этого выводы
Вид материала | Документы |
Содержание100 Великих научных открытий 100 Великих научных открытий Тайны живого 100 Великих научных открытий Геном человека 100 Великих научных открыти1 Тайны живого |
- Тема: «И думал о счастье…», 107.6kb.
- Ивид Славы Всевышнего, как огонь, пожирающий на вершине горы, на глазах всех сыновей, 2908.84kb.
- Современна ли тема хамелеонства, 52.99kb.
- Т. А. Касаткина характерология достоевского, 3889.78kb.
- «Причины патогенной минерализации в организме человека», 196.34kb.
- Человек и общество в изображении, 24.87kb.
- Тема урока. Значение кожи и ее строение, 235.74kb.
- Конкурс по естествознанию «человек и природа», 22.16kb.
- Явырос в маленькой деревне на островах Тасмании. Все, что нам было необходимо, мы добывали, 846.97kb.
- Николай Лесков. Левша, 361.66kb.
Под руководством Макса Перуца Крик исследовал молекулярную структуру белков, в связи с чем у него возник интерес к генетическому коду последовательности аминокислот в белковых молекулах. Около 20 важнейших аминокислот служат мономерными звеньями, из которых построены все белки Изучая вопрос, определенный им как «граница между живым и неживым», Крик пытался найти химическую основу генетики, которая, как он предполагал, могла быть заложена в дезок-сирибо-нуклеиновой кислоте (ДНК).
В 1951 году двадцатитрехлетний американский биолог Джеймс Д. Уотсон пригласил Крика на работу в Кавендишскую лабораторию.
Джеймс Девей Уотсон родился 6 апреля 1928 года в Чикаго (штат Иллинойс) в семье Джеймса Д. Уотсона, бизнесмена, и Джин (Митчелл) Уотсон и был их единственным ребенком. В Чикаго он получил начальное и среднее образование. Вскоре стало очевидно, что Джеймс необыкновенно одаренный ребенок, и его пригласили на радио для участия в программе «Викторины для детей» Лишь два года проучившись в средней школе, Уотсон получил в 1943 году стипендию для обучения в экспериментальном четырехгодичном колледже при Чикагском университете, где проявил интерес к изучению орнитологии. Став бакалавром естественных наук в университете Чикаго в 1947 году, он продолжил образование в Индианском университете Блумингтона.
К этому времени Уотсон заинтересовался генетикой и начал обучение в Индиане под руководством специалиста в этой области Германа Дж. Меллера и бактериолога Сальвадора Лурия. Уотсон написал диссертацию о влиянии рентгеновских лучей на размножение бактериофагов (вирусов, инфицирующих бактерии) и получил в 1950 году степень доктора философии. Субсидия Национального исследовательского общества позволила ему продолжить исследования бактериофагов в Копенгагенском университете в Дании Там он проводил изучение биохимических свойств ДНК бактериофага Однако, как он позднее вспоминал, эксперименты с бактериофагом стали его тяготить, ему хотелось узнать больше об истинной структуре молекул ДНК, о которых так увлеченно говорили генетики.
Крику и Уотсону было известно, что существует два типа нуклеиновых кислот — ДНК и рибонуклеиновая кислота (РНК), каждая из которых состоит из моносахарида группы пентоз, фосфата и четырех азотистых оснований: аденина, тимина (в РНК — урацила), гуанина и цитозина. В течение последующих восьми месяцев Уотсон и Крик обобщили полученные результаты с уже имевшимися, сделав сообщение о структуре ДНК в феврале 1953 года Месяцем позже они создали трехмерную модель молекулы ДНК, сделанную из шариков, кусочков картона и проволоки.
Согласно модели Крика—Уотсона, ДНК представляет двойную спираль, состоящую из двух цепей дезоксирибозофосфата, соединенных парами оснований аналогично ступенькам лестницы. Посредством водородных связей аденин соединяется с тимином, а гуанин — с ци-тозином С помощью этой модели можно было проследить репликацию самой молекулы ДНК.
Модель позволила другим исследователям отчетливо представить репликацию ДНК. Две цепи молекулы разделяются в местах водородных связей наподобие открытия застежки-молнии, после чего на каждой половине прежней молекулы ДНК происходит синтез новой. Последовательность оснований действует как матрица, или образец, для новой молекулы.
422
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
В 1953 году Крик и Уотсон завершили создание модели ДНК. Это позволило им вместе с Уилкинсом через девять лет разделить Нобелевскую премию 1962 года по физиологии и медицине «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых системах».
А.В. Энгстрем из Каролинского института сказал на церемонии вручения премии: «Открытие пространственной молекулярной структуры... ДНК является крайне важным, т.к. намечает возможности для понимания в мельчайших деталях общих и индивидуальных особенностей всего живого». Энгстрем отметил, что «расшифровка двойной спиральной структуры дезоксирибонуклеиновой кислоты со специфическим парным соединением азотистых оснований открывает фантастические возможности для разгадывания деталей контроля и передачи генетической информации».
После опубликования описания модели в английском журнале «Нейче» в апреле 1953 года тандем Крика и Уотсона распался.
В 1965 году Уотсон написал книгу «Молекулярная биология гена», ставшую одним из наиболее известных и популярных учебников по молекулярной биологии.
Что касается Крика, то в 1953 году он получил степень доктора философии в Кембридже, защитив диссертацию, посвященную рентгеновскому дифракционному анализу структуры белка. В течение следующего года он изучал структуру белка в Бруклинском политехническом институте в Нью-Йорке и читал лекции в разных университетах США. Возвратившись в Кембридж в 1954 году, он продолжил свои исследования в Кавендишской лаборатории, сконцентрировав внимание на расшифровке генетического кода. Будучи изначально теоретиком, Крик начал совместно с Сиднеем Бреннером изучение генетических мутаций в бактериофагах (вирусах, инфицирующих бактериальные клетки).
К 1961 году были открыты три типа РНК: информационная, рибо-сомальная и транспортная. Крик и его коллеги предложили способ считывания генетического кода. Согласно теории Крика, информационная РНК получает генетическую информацию с ДНК в ядре клетки и переносит ее к рибосомам (местам синтеза белков) в цитоплазме клетки. Транспортная РНК переносит в рибосомы аминокислоты. Информационная и рибосомная РНК, взаимодействуя друг с другом, обеспечивают соединение аминокислот для образования молекул белка в правильной последовательности. Генетический код составляют триплеты азотистых оснований ДНК и РНК для каждой из 20 аминокислот. Гены состоят из многочисленных основных триплетов, которые Крик назвал кодонами.
До расшифровки генома человека оставалось сорок лет...
КЛОНИРОВАНИЕ
История клонирования началась в далекие сороковые годы в СССР. Тогда советский эмбриолог Георгий Викторович Лопашов разработал метод пересадки (трансплантации) ядер в яйцеклетку лягушки. Результаты исследований он отправил в июне 1948 года в «Журнал общей биологии». Ученому не повезло В августе 1948 года состоялась печально известная сессия ВАСХНИЛ, где окончательно утвердилось непререкаемое лидерство в биологии известного борца с генетикой Т.Д. Лысенко. Набор статьи Лопашова был рассыпан. Еще бы! Там доказывалась ведущая роль ядра и содержащихся в нем хромосом в индивидуальном развитии организмов. Как это часто случалось в истории российской науки, приоритет достался американским эмбриологам Бригге и Кингу, выполнившим в пятидесятые годы сходные опыты.
Дальнейшее совершенствование методики связано с Джоном Гер-доном (Великобритания). Он стал удалять из яйцеклетки лягушки собственное ядро и трансплантировать в нее разные ядра, выделенные из специализированных клеток. Позднее он стал пересаживать ядра из клеток взрослого организма. В некоторых случаях у Гердона яйцеклетки с чужим ядром развивались до достаточно поздних стадий. В одном-двух случаях из ста особи проходили стадию метаморфозы и превращались во взрослых лягушек. Правда, таких хилых и дефектных, что вряд ли можно говорить об абсолютно точном копировании.
Однако вокруг исследований Гердона поднялся большой шум. Тогда впервые заговорили и о клонировании человека.
Как пишет доктор медицинских наук Леонид Иванович Корочкин, «проблемой клонирования животных заинтересовались и в России:
! < 1
424
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
программа «Клонирование млекопитающих» стояла в плане совместной работы двух лабораторий — моей и академика Д.К. Беляева, обратившего внимание на идею клонирования и поддержавшего исследования в этой области. В 1974 году я даже выступал с докладом на сессии ВАСХНИЛ, опубликованным в книге «Генетическая теория отбора, подбора и методов разведения животных» (Новосибирск: Наука, 1976) и сообщавшим, что «в настоящее время ставится задача получения клона млекопитающих», и с преждевременным оптимизмом заключавшим, что задача эта очень сложная, но принципиально разрешимая. Наши начинания первоначально неплохо финансировались, но вскоре государство потеряло к ним интерес. Основным выводом, сделанным нами на основе тех результатов, которые мы успели получить, явилось признание бесперспективности трансплантации ядер при попытках получить клон млекопитающих. Эта операция оказалась слишком травматичной, предпочтительнее было применить метод соматической гибридизации, то есть перенос чужеродного ядра с помощью слияния яйцеклетки с соматической клеткой, ядро которой требовалось поместить в яйцеклетку. Именно такой подход использовал впоследствии Ян Вильмут при получении овечки Долли. Кстати, его сотрудник посещал Новосибирский институт цитологии и генетики АН СССР и беседовал с сотрудниками, когда-то занимавшимися проблемой клонирования (это не значит, конечно, что он непременно воспользовался их идеями).
В конце 70-х годов американец швейцарского происхождения Карл Иллменсее опубликовал статью, из которой следовало, что ему удалось получить клон из трех мышек. И вновь клональный бум вытеснил все остальные научные новости, вновь зазвучали фанфары, возвещавшие об осуществлении вековой мечты человечества о бессмертии, достижимом, впрочем, своеобразным способом — через искусственное производство себе подобных копий. Горечь разочарования не заставила себя ждать: в научной среде поползли слухи о том, что в опытах Иллменсее что-то нечисто, что их никому (даже самым искусным экспериментаторам) не удается воспроизвести. В конце концов была создана авторитетная комиссия, поставившая на работе Иллменсее крест, признав ее недостоверной. Таким образом, по самой проблеме был нанесен весьма болезненный удар и поставлена под сомнение ее разрешимость. На какое-то время воцарилось спокойствие. И вдруг как гром с ясного неба — овечка Долли!»
В феврале 1997 года появилось сообщение о том, что в лаборатории Яна Вильмута в шотландском городе Эдинбурге в Рослинском институте сумели клонировать овцу. Как стало известно позднее, только один опыт из 236 стал удачным Так появилась на свет овечка Долли, содержащая генетический материал взрослой овцы, умершей три года назад.
Извлеченные яйцеклетки поместили в искусственную питательную среду с добавлением эмбриональной телячьей сыворотки при температуре 37 градусов Цельсия и провели операцию удаления собственного
ТАЙНЫ ЖИВОГО
425
ядра. Для обеспечения яйцеклетки генетической информацией от клонируемого организма использовали разные клетки донора. Наиболее удобными оказались диплоидные клетки молочной железы взрослой беременной овцы.
«Развивающийся зародыш культивировали в течение 6 дней в искусственной химической среде или яйцеводе овцы, перетянутом лигатурой ближе к рогу матки, — отмечает Л.И. Корочкин — На стадии морулы или бластоцисты эмбрионы (от одного до трех) трансплантировали в матку приемной матери, где они могли развиваться до рождения».
Группа ученых из университета в Гонолулу во главе с Риузо Яна-гимачи решили усовершенствовать метод Вильмута. Они изобрели микропипетку, с помощью которой можно было безболезненно извлекать ядро из соматической клетки и трансплантировать его в обезъяд-ренную яйцеклетку. Еще одно «ноу-хау» группы Янагимачи — использование в качестве донорских относительно менее дифференцированных ядер клеток, окружающих яйцеклетки.
Трансплантируемое дифференцированное в определенном направлении ядро и цитоплазма яйцеклетки до того работали как бы в разных режимах. Для обеспечения естественных ядерно-цитоплазматических взаимоотношений между ядром и цитоплазмой, они добились синхронизации процессов, протекающих в яйцеклетке и трансплантируемом в нее ядре.
Исследования Вильмута и ученых из Гонолулу привели, без сомнения, к выдающимся достижениям. Но перспективы их дальнейшего развития следует оценивать с осторожностью. Получить абсолютно точную копию данного конкретного животного очень сложно. По крайней мере, гораздо сложнее, чем это может показаться при первом знакомстве с проблемой. Главная причина в том, что структурно-функциональные изменения ядер в ходе индивидуального развития животных достаточно глубоки. Если одни гены активно работают, другие инактивируются и «молчат». Сам же зародыш представляет собой своеобразную мозаику полей распределения таких функционально различных генов. Чем выше на иерархической эволюционной лестнице стоит животное, тем большая специализация у организма, и изменения глубже и труднее обратимы.
«У некоторых организмов, — пишет Корочкин, — например, у известного кишечного паразита аскариды, генетический материал в будущих зародышевых клетках остается неизменным в ходе развития, а в других соматических клетках выбрасываются целые большие фрагменты ДНК — носителя наследственной информации. В красных кровяных клетках (эритроцитах) птиц ядра сморщиваются в маленький комочек и не работают, а из эритроцитов млекопитающих, стоящих эволюционно выше птиц, вообще выбрасываются за ненадобностью. У плодовой мушки дрозофилы особенно четко выражены процессы, свойственные и другим организмам: селективное умножение или, наоборот,
426
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
недостача каких-то участков ДНК, по-разному проявляющиеся в разных тканях. Совсем недавно было показано, что в соматических клетках в ходе их развития хромосомы последовательно укорачиваются на своих концах, в зародышевых клетках специальный белок — теломераза достраивает, восстанавливает их, то есть полученные данные опять-таки свидетельствуют о существенных различиях между зародышевыми и соматическими клетками. И, следовательно, встает вопрос, способны ли ядра соматических клеток полностью и эквивалентно заменить ядра зародышевых клеток в их функции обеспечения нормального развития зародыша.
Уже упомянутый Карл Иллменсее исследовал, насколько дифференцированные ядра дрозофилы способны обеспечить нормальное развитие этого животного из яйца. Оказалось, что до поры до времени зародыш развивается нормально, но уже на ранних стадиях эмбриогенеза наблюдаются отклонения от нормы, возникают уродства, и такой эмбрион неспособен превратиться даже в личинку, не говоря уже о взрослой мухе. У лягушки как существа менее развитого, чем млекопитающие, ядерные изменения менее выражены. И при этом процент успеха при клонировании, как уже отмечалось, невысок (1—2 процента)...
Но млекопитающие значительно сложнее лягушек по своему устройству и степени дифференцированности клеток. Естественно, у них процент успеха будет, по крайней мере, не выше».
Кроме того, не надо забывать о несовпадении условий развития в матке разных приемных матерей. А значит, что в разных условиях развития зародыша одинаковые гены будут обнаруживать свое действие по-разному. Поскольку таких генов тысячи, то и вероятность полного сходства «клонов» будет не очень велика.
Основываясь на таком заключении, специалисты считают, что полное клонирование человека, например, невозможно. «Много шума из ничего», — так охарактеризовал Вентер, руководитель проекта по расшифровке генома человека, споры вокруг клонирования. — Можно создать человека, который будет выглядеть, как ваш близнец, но вероятность того, что его характер и интересы будут такие же, как у вас, близка к нулю. «Ксерокопировать» людей невозможно», — констатирует ученый.
ГЕНОМ ЧЕЛОВЕКА
Сенсационное научное достижение — расшифровку генома человека — по значимости сравнивают с расщеплением атома или раскрытием строения молекулы ДНК. Одно ясно: это открытие подняло науку на принципиально новый уровень познания.
Может быть, впервые в современной науке сложилась необычная ситуация. В работу над исключительно дорогостоящим и важным проектом включились, с одной стороны, индивидуальные исследователи, нашедшие себе мощных спонсоров, с другой стороны, учреждения и университеты, финансируемые правительствами нескольких стран. Первоначально в 1988 году средства на изучение генома человека выделило Министерство энергетики США. Одним из руководителей программы «Геном человека» стал профессор Чарлз Кэнтор. В 1990 году Джеймс Уотсон в результате лоббирования конгресса США — добился вскоре выделения сразу сотни миллионов долларов на изучение генома человека. То была весомая добавка к бюджету Министерства здравоохранения. Оттуда деньги направлялись в ведение дирекции сети институтов, объединенных под общим названием — Национальные институты здоровья (МН). В составе МН появился новый институт — Национальный институт исследования генома человека, директором которого стал Фрэнсис Коллинз.
В мае 1992 года ведущий сотрудник МН Крэйг Вентер подал заявление об уходе. Он объявил о создании нового, частного исследовательского учреждения — Института геномных исследований, сокращенно ТИГР. Ученому удалось удивительно быстро развить и вырастить свое детище. Уже первоначальный капитал института составил семьдесят миллионов долларов, пожертвованных спонсорами. ТИГР объявили неприбыльным частным институтом, не использующим свои результаты для обогащения или торговли. Практически одновременно образовали компанию «Науки о геноме человека», которая должна была продвигать на рынок данные, получаемые сотрудниками ТИГРа.
В июне 1997 года Вентер начал новые преобразования. Он вывел ТИГР из связки с «Наукой» и в 1998 году организовал в Роквилле (штат Мэриленд) свою собственную коммерческую компанию, которую назвал «Силера джиномикс». Вентер стал ее президентом, оставшись
428
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИ1
главным научным руководителем ТИГРа. Последний возглавила его жена Клэйр Фрэйзер.
Как пишет В.Н. Сойфер, «Вентер оказался исключительно умельи руководителем. Он договорился с одной из крупных компаний m производству научного оборудования, что та предоставит в прокат ТИП 18-20 автоматических секвенаторов-роботов, которые в первый же год работы позволят довести размер секвенируемых последовательностей дс 60 миллионов оснований (одной пятой всего генома человека; такой же был важен и для компании — лучшей рекламы своей продукции представить трудно). Позже Вентер заключил аналогичный контракт поставке институту огромных систем усовершенствованных роботов дл* секвенирования протяженных кусков ДНК». В распоряжении Вентера оказался огромный парк компьютеров, который считают вторым п< мощности в мире. Триста суперкомпьютеров стоимостью около 80 мил-1 лионов долларов круглосуточно обрабатывают огромные объемы данных.
В итоге работы по Проекту человеческого генотипа набрали небывалую скорость. Первоначально получить полную версию генотипа I обещали к 2010 году, потом предполагалось завершить работу в 2003 году. Результата удалось добиться уже в 2001-м!
Открывая независимый центр — Институт исследования генотипа, Вентер пообещал первым расшифровать человеческий генотип.
К 2001 году удалось получить последовательность двух миллиардов знаков генотипа. Причем на установление последовательности первого миллиарда ушло четыре года, а на второй миллиард — меньше четырех месяцев. Ускорение — результат применения высоких технологий, например роботов.
Команда Вентера использует метод, называемый пулеметная последовательность. Взрывным способом весь генотип разделяется на семьдесят миллионов фрагментов. Далее машиной выстраивается последовательность, а порядок генотипа обрабатывается суперкомпьютером, управляемым процессором мощностью в 1,3 триллиона операций в секунду.
Вентер доказал эффективность пулеметной последовательности, когда «Силера джиномикс» воспроизвела последовательность генотипа микроба ответственного за такие серьезные инфекции, как менингит, а также закончила расшифровку генотипа фруктовой мухи (120 миллионов знаков).
В 2001 году Международный консорциум, в который вошли помимо ведущего участника этого проекта — биотехнологической компании «Силера джиномикс», 16 организаций из Великобритании, США, Франции, Германии, Японии и Китая, обнародовали результаты колоссальной работы. Ученые определили, что генетическую программу молеку-
ТАЙНЫ ЖИВОГО
429
лы ДНК составляют 3,2 миллиарда бесконечно повторяющихся четырех пар азотистых оснований аденина, тимина, цитозина и гуанина.
Самой большой неожиданностью стал тот факт, что количество генов в наследственной программе человека оказалось не 80—100 тысяч, как ожидалось, а лишь 30—40 тысяч.
Если сравнить с количеством генов дождевого червя (18 000) или плодовой мушки (13 000), то разница окажется не слишком велика! При этом у разных живых организмов выявлены сходные гены, что только подтверждает теорию молекулярной эвононии.
«Если кто-то думал, что основное отличие между биологическими видами определяется именно количеством генов, то он, скорее всего, ошибался», — подводит итог профессор Эрик Ландер, руководитель научных исследований по геному человека в Массачусетском технологическом институте США. А Вентер не без сарказма добавляет: «Всего нескольких сотен генов, которые есть в геноме человека, нет в геноме мыши». Таким образом, первоначальные представления о том, что человек является с биологической точки зрения сложнейшей структурой, ученые подтвердить не смогли.
«Работа человеческих генов, говорят они, оказалась намного сложнее, чем они предполагали, — пишет в журнале «Эхо планеты» Елена Слепчук. — У нас за один и тот же признак, за одну и ту же болезнь отвечают не один, а несколько или даже группа генов. Впрочем, об этом генетики догадывались и раньше. Возможно, таким образом гены страхуют друг друга, а заодно и приобретают более широкое поле деятельности. Работу генов можно сравнить с действиями кукловодов, ведущих целый спектакль, виртуозно руководя послушными куклами и вводя по ходу действия все новые персонажи. Представим, что вместо ниточек идут генные команды на производство тех или иных пептидов, из которых впоследствии строится тело живого организма. По мнению молекулярных биологов, еще одна особенность человеческих генов состоит в том, что природа придала нам большее число так называемых генов-контролеров, которые следят за работой своих «собратьев». Действительно, зачем без конца увеличивать штат работников, если поставленной цели можно достичь путем толкового менеджмента? Вот где пример для подражания нашим управленцам. Кстати, ученые Кембриджского университета уже запланировали специальное исследование, надеясь разобраться, каким образом такая сложная структура — человек — спокойно управляется столь небольшим количеством генов.