Жизнь человека с самого начала складывалась так, что все, чем бы он не занимался, заставляло его наблюдать за окружающим миром и делать из этого выводы
Вид материала | Документы |
- Тема: «И думал о счастье…», 107.6kb.
- Ивид Славы Всевышнего, как огонь, пожирающий на вершине горы, на глазах всех сыновей, 2908.84kb.
- Современна ли тема хамелеонства, 52.99kb.
- Т. А. Касаткина характерология достоевского, 3889.78kb.
- «Причины патогенной минерализации в организме человека», 196.34kb.
- Человек и общество в изображении, 24.87kb.
- Тема урока. Значение кожи и ее строение, 235.74kb.
- Конкурс по естествознанию «человек и природа», 22.16kb.
- Явырос в маленькой деревне на островах Тасмании. Все, что нам было необходимо, мы добывали, 846.97kb.
- Николай Лесков. Левша, 361.66kb.
Продвижение Винера по службе шло медленно. Он пытался получить приличное место в других странах, но у него не вышло. Однако пришла пора, наконец, и везения. На заседании Американского математического общества Винер встретился с Я.Д. Тамаркиным, геттин-генским знакомым, всегда высоко отзывавшимся о его работах. Такую же поддержку оказывал ему неоднократно приезжавший в США Харди. И это повлияло на положение Винера: благодаря Тамаркину и Харди он стал известен в Америке.
Особо значимой оказалась совместная деятельность Винера с приехавшим из Германии в Гарвардский университет Э. Хопфом — в результате чего в науку вошло «уравнение Винера — Хопфа», описывающее радиационные равновесия звезд, а также относящееся к другим задачам, в которых ведется речь о двух различных режимах, отделенных границей.
В 1929 году в шведском журнале «Акта математика» и американском «Анналы математики» вышли две большие итоговые статьи Винера по обобщенному гармоническому анализу.
С 1932 года Винер — профессор МТИ. В Гарварде он познакомился с физиологом А. Розенблютом и стал посещать его методологический семинар, объединявший представителей различных наук. Этот семинар сыграл важную роль в формировании у Винера идей кибернетики. После отъезда Розенблюта в Мехико заседания семинара проводились иногда в Мехико, иногда в МТИ.
В 1934 году Винер получил приглашение из университета Цинхуа (в Пекине) прочитать курс лекций по математике и электротехнике. Год посещения Китая он считал годом полного своего становления как ученого.
Во время войны Винер почти целиком посвятил свое творчество военным задачам. Он исследует задачу движения самолета при зенитном
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
253
обстреле. Обдумывание и экспериментирование убедили Винера в том, что система управления огнем зенитной артиллерии должна быть системой с обратной связью; что обратная связь играет существенную роль и в человеческом организме. Все большую роль начинают играть прогнозирующие процессы, осуществляя которые нельзя полагаться лишь на человеческое сознание.
Существовавшие в ту пору вычислительные машины необходимым быстродействием не обладали. Это заставило Винера сформулировать ряд требований к таким машинам. По сути дела, им были предсказаны пути, по которым в дальнейшем пошла электронно-вычислительная техника. Вычислительные устройства, по его мнению, «должны состоять из электронных ламп, а не из зубчатых передач или электромеханических реле. Это необходимо, чтобы обеспечить достаточное быстродействие». Следующее требование состояло в том, что в вычислительных устройствах «должна использоваться более экономичная двоичная, а не десятичная система счисления». Машина, полагал Винер, должна сама корректировать свои действия, в ней необходимо выработать способность к самообучению. Для этого ее нужно снабдить блоком памяти, где откладывались бы управляющие сигналы, а также те сведения, которые машина получит в процессе работы.
Если ранее машина была лишь исполнительным органом, всецело зависящим от воли человека, то ныне она становилась думающей и приобретала определенную долю самостоятельности.
В 1943 году вышла статья Винера, Розенблюта, Байглоу «Поведение, целенаправленность и телеология», представляющая собой набросок кибернетического метода.
В 1948 году в нью-йоркском издательстве «Джон Уили энд Санз» и парижском «Херманн эт Ци» выходит книга Винера «Кибернетика».
«Основной тезис книги, — пишет Г.Н. Поваров в предисловии к «Кибернетике», — подобие процессов управления и связи в машинах, живых организмах и обществах, будь то общества животных (муравейник) или человеческие. Процессы эти суть, прежде всего, процессы передачи, хранения и переработки информации, т. е. различных сигналов, сообщений, сведений. Любой сигнал, любую информацию, независимо от ее конкретного содержания и назначения, можно рассматривать как некоторый выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), и это позволяет подойти ко всем процессам с единой меркой, с единым статистическим аппаратом. Отсюда мысль об общей теории управления и связи — кибернетике.
Количество информации — количество выбора — отождествляется Винером с отрицательной энтропией и становится, подобно количеству вещества или энергии, одной из фундаментальных характеристик явлений природы. Таков второй краеугольный камень кибернетического здания. Отсюда толкование кибернетики как теории организации,
254
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
как теории борьбы с мировым хаосом, с роковым возрастанием энтропии.
Действующий объект поглощает информацию из внешней среды и использует ее для выбора правильного поведения. Информация никогда не создается, она только передается и принимается, но при этом может утрачиваться, исчезать. Она искажается помехами, «шумом», на пути к объекту я внутри его и теряется для него».
Основоположником современной теории управления сам Винер считал Дж.К. Максвелла, и это совершенно справедливо. Теория автоматического регулирования была в основном сформулирована Дж. Максвеллом, И. Вышнеградским, А. Ляпуновым и А. Стодолой. В чем же заслуга Н. Винера? Может быть, его книга просто представляет собой компиляцию известных сведений, собирает воедино известный, но разрозненный материал?
Основная заслуга Винера в том, что он впервые понял принципиальное значение информации в процессах управления. Говоря об управлении и связи в живых организмах и машинах, он видел главное не просто в словах «управление» и «связь», а в их сочетании. Точно так же, как в теории относительности важен не сам факт конечности скорости взаимодействия, а сочетание этого факта с понятием одновременности событий, протекающих в различных точках пространства. Кибернетика — наука об информационном управлении, и Винера с полным правом можно считать творцом этой науки.
«С выходом книги в свет кончился первый, инкубационный период истории кибернетики, — пишет Г.Н. Поваров, — и начался второй, крайне бурный — период распространения и утверждения. Дискуссии потрясли ученый мир. Кибернетика нашла горячих защитников и столь же горячих противников...
...Одни усматривали в кибернетике сплошной философский выверт и «холодную войну» против учения Павлова. Другие, энтузиасты, относили на ее счет все успехи автоматики и вычислительной техники и соглашались видеть уже в тогдашних «электронных мозгах» подлинных разумных существ. Третьи, не возражая против сути проекта, сомневались, однако, в успехе предпринятого синтеза и сводили кибернетику к простым призывам.
...Вокруг всего этого бушевали страсти. Однако кибернетика выиграла, в конце концов, сражение и получила право гражданства в древней семье наук. Период утверждения занял приблизительно десятилетие. Постепенно решительное отрицание кибернетики сменилось поисками в ней «рационального зерна» и признанием ее полезности и неизбежности. К 1958 году уже почти никто не выступал совсем против. Винеровский призыв к синтезу раздался в чрезвычайно благоприятный момент, обстоятельства работали на кибернетику, несмотря на ее несовершенства и преувеличения».
В 1959 году академик А.Н. Колмогоров писал: «Сейчас уже поздно спорить о степени удачи Винера, когда он в своей известной книге в
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
255
1948 году выбрал для новой науки название «кибернетика». Это название достаточно установилось и воспринимается как новый термин, мало связанный со своей греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы «целесообразности» в машинах и философскому анализу изучаемого ею круга явлений».
ТАЙНЫ ВСЕЛЕННОЙ
ГЕОЦЕНТРИЧЕСКАЯ МОДЕЛЬ МИРА
Уже в древности люди хотели получить ответы на такие важные вопросы, как «что такое наша Земля?», «каковы ее размеры?», «каково ее место во Вселенной?» и т. д. Но поиски ответов оказались долгими и трудными.
«Первые ответы на вопрос «как устроен окружающий мир?» древние люди составляли на основе своих непосредственных впечатлений, — пишет в своей книге А.И.Климишин, — так, не ощущая никаких движений
Земли, люди, естественно, предположили, что она неподвижна. Наблюдая, как Солнце, Луна, весь небосвод вращаются вокруг Земли, они восприняли это как непреложный факт. У них не было оснований сомневаться в том, что Земля плоская. И, наконец, таким логичным казалось предположение, что она расположена в центре мира...
В Древнем Вавилоне сформировалось представление, будто Земля имеет вид выпуклого круглого острова, плавающего в мировом океане. На земную поверхность будто бы опирается небо — твердый каменный свод, к которому прикреплены звезды и планеты и по которому совершает свою ежедневную прогулку Солнце. Примечательно, что у древних шумеров слово «на» обозначало и «небо» и «камень». Позже основные элементы этой вавилонской модели мира встречаются и у древних евреев; ее, в частности, придерживались и авторы Библии. Например, в книге Иова говорится, будто бы «Бог... распростер небеса твердые, как литое зеркало» (Иов, 37, 18).» Вероятно, в Древней Греции впервые попытались научно объяснить эти явления, разгадать истинную причину их появления. Так выдающий-
ТАЙНЫ ВСЕЛЕННОЙ
257
ся мыслитель Гераклит Эфесский (около 544—470 гг. до нашей эры) высказал предположение о непрерывном развитии мира. Согласно Демокриту (около 460—370 гг. до нашей эры), Вселенная состоит из бесконечного множества миров, образующихся вследствие столкновения атомов, причем одни миры рождаются, другие находятся в состоянии расцвета, третьи разрушаются. Демокрит предполагал, что Млечный Путь является скоплением большого числа звезд.
У Пифагора встречается мысль о том, что Земля имеет форму шара и что она висит в пространстве без какой бы то ни было поддержки. Аристотель (384—322 гг. до нашей эры) в своем труде «О небе» уже приводит величину земной окружности, из чего следует, что радиус Земли в современной мере равен примерно 10 000 километрам.
земли, воды, воздуха и огня, тогда как небесные тела состоят из иной, неуничтожимой формы материи — эфира. Ученый утверждал, что упомянутые четыре «стихии» располагаются друг над другом в виде концентрических сфер. Каждый элемент, сместившись со своего «естественного» места, стремится снова занять его. Поэтому, мол, в природе и наблюдаются движения тяжелых элементов вниз (к «центру Вселенной»), а легких — вверх, где они переходят в состояние покоя. Аристотель и его последователи выступали против уже существовавших в то время представлений о возможном вращении Земли вокруг своей оси и ее движении в пространстве. Они выдвинули казавшиеся в то время неопровержимыми доказательства: если бы Земля вращалась вокруг своей оси, то возникал бы встречный ветер, который сдувал бы все с ее поверхности в сторону запада, а движение Земли неминуемо было бы обнаружено по изменению на протяжении года углового расстояния между произвольно взятой на небе парой звезд.
Сейчас известно: земная атмосфера в равной мере принимает участие в суточном вращении Земли, расстояния же до звезд оказались настолько велики, что у Аристотеля не было никаких шансов определить подобное изменение.
Сохранилась до наших дней работа Аристарха Самосского (около 320—230 гг. до нашей эры). Ему удалось измерить угловое расстояние Луны от Солнца в первой четверти. Он также сделал попытку определить размеры и расстояния до Луны и Солнца. По Аристарху, расстояние от Земли до Луны — 19 радиусов Земли, а до Солнца еще в 19 раз больше. По-видимому, имея в виду большие по сравнению с Землей размеры Солнца, Аристарх и высказал предположение, «что неподвижные звезды и Солнце не меняют своего места в пространстве, что Земля движется по окружности вокруг Солнца», как об этом сообщал позже и Архимед.
Во II веке до нашей эры величайший античный астроном Гиппарх определил размеры Луны с исключительной точностью. По Гиппарху, радиус Луны равен 0,27 земных радиусов, что мало отличается от принятого ныне. Расстояние до Луны этот выдающийся астроном определил в 59 радиусов Земли (истинное среднее значение — 60,3). Однако
258
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
расстояние до Солнца со времени Птолемея и вплоть до XVII века принималось равным 1120, т. е. примерно в 20 раз меньше истинного.
Первые попытки построить модель мира, в которой объяснялись бы прямые и попятные движения планет, были сделаны Евдоксом Книд-ским (около 408—353 гг. до нашей эры) и Аристотелем. Но шедевром античной астрономии стал труд выдающегося александрийского ученого Клавдия Птолемея (II век нашей эры) «Альмагест», в котором была построена новая теория планетных движений.
В то время все остальные науки о природе были еще только в зачаточном состоянии. Астрономы же, благодаря Птолемею, уже имели метод, позволявший с достаточной для того времени точностью рассчитать положение планет на небе на любое число лет вперед!
В геоцентрической модели мира Птолемея одна планета движется с угловой скоростью по малой окружности — эпициклу, центр которого, т.е другая «средняя планета», обращается с угловой скоростью по деференту вокруг Земли Из-за сложения обоих движений планета в пространстве описывает петлеобразную кривую — гипоциклоиду, что в проекции на небесную сферу при вполне определенных значениях угловых скоростей, а также величинах отношений радиуса эпицикла к радиусу деферента для каждой из планет полностью объясняло ее движение на небе. Эти значения Птолемей определил с большой точностью.
В связи с особенностями движения планеты Меркурий и Венера были названы нижними. Марс, Юпитер и Сатурн — верхними планетами. В системе мира Птолемея центры эпициклов нижних планет всегда расположены на прямой, соединяющей Землю с Солнцем, а каждая из верхних планет находится на эпицикле строго в том же направлении, в котором относительно Земли находится Солнце, иначе говоря, радиусы-векторы эпициклов Марса, Юпитера и Сатурна всегда параллельны между собой. Видно также, что верхняя планета, занимая на небе положение, противоположное Солнцу (противостояние планеты), находится в ближайшем к Земле положении — в перигее (от греческого «пери» — вблизи) В момент же соединения планеты с Солнцем, когда направления на оба светила совпадают, планета находится в апогее — в наиболее удаленной от Земли точке (от греческого «апо» — вдали).
Как замечает А.И. Климишин, «возникает вопрос: если система Птолемея ошибочна, поскольку она основывалась на ложном представлении о неподвижной Земле как центре мироздания, то почему расчеты, проведенные на ее основе, дают правильные результаты? Ведь именно поэтому она использовалась астрономами почти 1400 лет. Ответ на поставленный вопрос очевиден: это система кинематическая. Птолемей не объяснял (да и не мог объяснить), почему движение планеты именно такое, каким он его описывал. Но каждое движение относительно. И, как это ни парадоксально звучит, Птолемей описал и смоделировал движение каждой из планет совершенно правильно — так, как его действительно видит наблюдатель с Земли. Эпицикл верхней планеты
ТАЙНЫ ВСЕЛЕННОЙ
259
и есть отображение движения Земли вокруг Солнца (в случае нижней планеты это ее деферент)».
Но «...с помощью данных Птолемея было трудно согласовать между собой сведения о положениях той или другой планеты, разделенных промежутком времени в несколько сотен лет. Поэтому его система все больше усложнялась, в нее вводили множество дополнительных эпициклов, что сделало ее исключительно громоздкой. Явно противоречила наблюдениям построенная Птолемеем теория движения Луны. В итоге перегруженная эпициклами модель Птолемея рухнула. Произошла революция во взглядах на мир и место Земли во Вселенной...»
Иоганн Кеплер
ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ
Планеты благодаря своим внешне сложным движениям сыграли решающую роль в астрономии и вообще в построении фундамента механики и физики. Еще древнегреческие астрономы поставили вопрос, не являются ли наблюдаемые сложные перемещения по небу лишь отражением более регулярных движений планет в пространстве. С этого времени начинается теоретическое построение схем планетной системы, или же, как мы говорили выше, кинематики планетных движений в пространстве.
Один из первых коперниканцев, немецкий математик и астроном Эразм Рейнгольд (1511—1553) составил в 1551 году, основываясь на гелиоцентрической системе Коперника, таблицы движения планет, названные им «Прусские таблицы». Эти таблицы оказались более точными, чем все предыдущие, основанные на старых схемах, и это очень способствовало укреплению идеи гелиоцентризма, с огромным трудом пробивающей себе путь сквозь устоявшиеся веками и привычные для тех времен взгляды, а также преодолевающей реакционное идеологическое давление церкви.
Тем не менее вскоре астрономы обнаружили расхождение и этих таблиц с данными наблюдений движения небесных тел.
Для передовых ученых было ясно, что учение Коперника правильно, но надо было глубже исследовать и выяснить законы движения планет. Эту задачу решил великий немецкий ученый Кеплер.
Иоганн Кеплер (1571—1630) появился на свет в маленьком городке Вейле близ Штутгарта. Кеплер родился в бедной семье, и поэтому ему с большим трудом удалось окончить школу и поступить в 1589 году в Тюбингенский университет Здесь он с увлечением занимался математикой и астрономией. Его учитель профессор Местлин втайне был последователем Коперника. Конечно, в университете Местлин преподавал астрономию по Птолемею, но дома он знакомил своего ученика с основами нового учения. И вскоре Кеплер стал горячим и убежденным сторонником теории Коперника.
В отличие от Местлина, Кеплер не скрывал своих взглядов и убеждений. Открытая пропаганда учения Коперника очень скоро навлекла на него ненависть местных богословов. Еще до окончания университета, в 1594 году, Иоганна посылают преподавать математику в проте-
ТАЙНЫ ВСЕЛЕННОЙ
261
стантское училище города Граца, столицы австрийской провинции Штирии.
Уже в 1596 году он издает «Космографическую тайну», где, принимая вывод Коперника о центральном положении Солнца в планетной системе, пытается найти связь между расстояниями планетных орбит и радиусами сфер, в которые в определенном порядке вписаны и вокруг которых описаны правильные многогранники. Несмотря на то что этот труд Кеплера оставался еще образцом схоластического, квазинаучного мудрствования, он принес автору известность Знаменитый датский астроном-наблюдатель Тихо Браге (1546—1601), скептически отнесшийся к самой схеме, отдал должное самостоятельности мышления молодого ученого, знанию им астрономии, искусству и настойчивости в вычислениях и выразил желание встретиться с ним. Состоявшаяся позже встреча имела исключительное значение для дальнейшего развития астрономии.
В 1600 году приехавший в Прагу Браге предложил Иоганну работу в качестве своего помощника для наблюдений неба и астрономических вычислений. Незадолго перед этим Браге был вынужден оставить свою родину Данию и выстроенную им там обсерваторию, где он в течение четверти века вел астрономические наблюдения. Эта обсерватория была снабжена лучшими измерительными инструментами, а сам Браге был искуснейшим наблюдателем. Ученый с большим интересом относился к учению Коперника, но сторонником его не был. Он выдвигал свое объяснение устройства мира: планеты он признавал спутниками Солнца, а Солнце, Луну и звезды считал телами, обращающимися вокруг Земли, за которой, таким образом, сохранялось положение центра всей Вселенной.
Браге работал вместе с Кеплером недолго: в 1601 году он умер. После его смерти Кеплер начал изучать оставшиеся материалы с данными долголетних астрономических наблюдений. Работая над ними, в особенности над материалами о движении Марса, Кеплер сделал замечательное открытие: он вывел законы движения планет, ставшие основой теоретической астрономии.
Отправным пунктом для Кеплера служило сравнение теории и наблюдений. Дело в том, что к концу XVI века Прусские таблицы, составленные, как уже говорилось выше, стали предсказывать движение планет очень неточно Наблюденные и вычисленные по этим таблицам положения планет отличались на 4—5 градусов, что было недопустимо в астрономической практике. Отсюда вытекало, что планетная теория Коперника нуждается в исправлении и дополнении.
В начале Кеплер пошел по пути уточнения и усложнения схемы Коперника. Конечно, он был глубоко убежден в истинности принципа гелиоцентризма и стал подбирать новые комбинации окружностей (эпициклов, эксцентров). Ему удалось подобрать, в конце концов, такую комбинацию, что его схема давала ошибку по сравнению с наблюде-
262
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
ниями до 8 минут. Но Кеплер был уверен, что Тихо Браге в своих наблюдениях не мог допускать таких ошибок.
Поэтому Кеплер заключил, что «виновата» теория, поскольку она не согласуется с астрономической практикой. Он отбросил полностью схему, основанную на эпициклах и эксцентрах, и стал искать другие схемы.
Кеплер пришел к мысли о неправильности установившегося с древности мнения о круговой форме планетных орбит. Путем вычислений он доказал, что планеты движутся не по кругам, а по эллипсам — замкнутым кривым, форма которых несколько отличается от круга. При решении данной задачи Кеплеру пришлось встретиться со случаем, который, вообще говоря, методами математики постоянных величин решен быть не мог. Дело сводилось к вычислению площади сектора эксцентрического круга. Если эту задачу перевести на современный математический язык, мы придем к эллиптическому интегралу. Дать решение задачи в квадратурах Кеплер, естественно, не мог, но он не отступил перед возникшими трудностями и решил задачу путем суммирования бесконечно большого числа «актуализированных» бесконечно малых. Этот подход к решению важной и сложной практической задачи представлял собой в новое время первый шаг в предыстории математического анализа.