Лабораторный компьютерный практикум
Вид материала | Практикум |
- А. М. Горького Кафедра алгебры и дискретной математики Щербакова В. А. Лабораторный, 418.72kb.
- Липатов Петр Иванович, учитель биологии; Липатова Людмила Николаевна, учитель биологии, 620.01kb.
- Практикум по химии Анкудимова И. А., Гладышева, 2202.13kb.
- Учебно-методический комплекс дисциплины «лабораторный практикум по бухгалтерскому учету, 3221.38kb.
- Практикум, методическое руководство, компьютерный практикум на cd rom по информатике, 353.2kb.
- Жигалов М. С., Мойсеяк М. Б. Лабораторный практикум по технохимическому контролю чайного, 572.07kb.
- Своей целью лабораторный комплекс ставит глубокое знакомство студентов с системой межпроцессных, 17.55kb.
- Московский инженерно-физический институт, 1479.21kb.
- Утверждаю: Декан Физико-технического факультета, 146.47kb.
- Лабораторные работы, 281.72kb.
Задание 1. Определение зависимости радиуса траектории от величины заряда частицы
Ознакомьтесь с теоретической частью работы.
Откройте рабочее окно.
Задайте численные значения следующих параметров: q = 1е; m = 8 а.е.м.; V0 =1,5·105 м/с; α = 90°; B =10 мТ; Еx = 0; Еz = 0;
Нажмите кнопку Пуск. Пронаблюдайте за движением заряженной частицы. Нажмите кнопку Стоп.
Устанавливая последовательно значения электрического заряда q = 1, q = 3, q = 4, q = 5 …, получите траектории движения частицы при влете в магнитное поле под углом 90° к вектору индукции. Каждый раз производите с помощью линейки с миллиметровыми делениями измерения (по горизонтали) диаметра окружности, по которой движется частица с известным значением заряда q и заполняйте табл. 1.1.
Таблица 1.1.
Значения радиуса траектории как функции заряда частицы
-
q, ед. заряда электрона
1
2
3
4
5
6
7
8
R (см)
R·q
По данным табл. 1.1 постройте в отчете график зависимости R = f(q). Какой математической функцией можно описать полученную зависимость? Для проверки гипотезы об обратно пропорциональной зависимости радиуса траектории от величины заряда частицы сравните для всех ячеек табл. 1.1 величины произведения qR. Если величина произведения окажется одинаковой (с учетом ошибки измерений), то гипотеза будет подтверждена.
Задание 2. Определение зависимости радиуса траектории от величины массы частицы
Измените значения параметров q = 1е; m = 1а.е.м. Остальные величины оставьте без изменений. Устанавливая значения массы частицы по ряду значений, указанных в табл. 1.2, получите соответствующие траектории и произведите измерения диаметров окружностей, отвечающих траекториям частицы с установленным зарядом, последовательно заполняя табл. 1.2.
Таблица 1.2.
Значения радиуса траектории как функции массы частицы
-
m, ед. атомной массы
1
2
3
4
5
6
7
8
R (см)
По данным табл. 1.2 постройте в отчете график функциональной зависимости R = f(m). Запишите, какой зависимостью можно описать полученные результаты.