Опорный конспект лекции фсо пгу 18. 2/07 Министерство образования и науки Республики Казахстан
Вид материала | Конспект |
- Опорный конспект лекции фсо пгу 18. 2/07 Министерство образования и науки Республики, 1449.98kb.
- Опорный конспект лекции фсо пгу 18. 2/07 Министерство образования и науки Республики, 337.81kb.
- Опорный конспект лекции ффсо пгу 18. 2/05 Министерство образования и науки Республики, 1108.14kb.
- Опорный конспект лекции фсо пгу 18. 2/07 Министерство образования и науки Республики, 290.94kb.
- Опорный конспект Форма ф со пгу 18. 2/05 Министерство образования и науки Республики, 856.54kb.
- Титульный лист программы обучения по дисциплине фсо пгу 18. 3/37 для студентов (Syllabus), 677.11kb.
- Титульный лист программы обучения по дисциплине фсо пгу 18. 3/37 для студентов (Syllabus), 804.38kb.
- Методические указания Форма ф со пгу 18. 2/05 Министерство образования и науки Республики, 98.43kb.
- Методические указания Форма ф со пгу 18. 2/07 Министерство образования и науки Республики, 249.4kb.
- Рабочая программа ф со пгу 18. 2/06 Министерство образования и науки Республики Казахстан, 295.37kb.
1.4Периферийные устройства
1.4.1Печатающие устройства (принтеры)
Все печатающие устройства можно разделить на последовательные, строчные и страничные. В каждой группе можно выделить устройства ударного (impact) и безударного (non-impact) действия. По используемой технологии печати различают матричные, струйные, лазерные и LED-принтеры, принтеры с термопереносом восковой мастики, с термосублимацией, а также с изменением фазы красителя.
Матричные принтеры
Последовательные ударные матричные печатающие устройства работают следующим образом: вертикальный ряд (или два ряда) игл «вколачивают» с ленты в бумагу, формируя последовательно символ за символом. Для этих принтеров возможно использование как форматной так и рулонной бумаги.
Головка принтера оснащается 9, 18 или 24 иголками, в последнем случае обеспечивается наилучшее для матричных принтеров качество.
Более высокое быстродействие обеспечивают построчные (постраничные) матричные принтеры, которые вместо головок используют длинные массивы с большим количеством игл, при этом достигается скорость печати до 1500 строк в минуту.
Основным достоинством матричных принтеров является низкая стоимость расходных материалов, в следствии чего себестоимость печати одного листа в несколько раз ниже, чем у лазерных или струйных моделей.
Расходным материалом в матричных принтерах является картридж с красящей лентой, при этом можно производить замену ленты без замены картриджа. Как правило одной ленты при правильной настройке узла хватает на распечатку от 500 до 1000 страниц текста.
Во всех остальных отношениях матричные принтеры хуже струйных и лазерных. Они имеют низкое графическое разрешение, печатают медленно и создают высокий уровень шума.
Струнные принтеры
Струнные принтеры относятся к безударным печатающим устройствам, то есть таким, у которых носитель печатаемой информации не касается бумаги. Струйные чернильные (Ink Jet) принтеры относятся, как правило, к классу последовательных безударных печатающих устройств, которые в свою очередь подразделяются на устройства непрерывного (continuous drop, continuous jet) и дискретного (drop-on-demand) действия. Последние в свою очередь могут использовать либо термическую «пузырьковую» технологию (bubble-jet, thermal ink-jet), либо пьезоэффект (piezo ink-jet). У чернильных устройств, как и матричных, печатающая головка движется относительно неподвижной бумаги. Сопла (канальные отверстия) на печатающей головке, через которые разбрызгиваются чернила, соответствуют «ударным» иглам. Количество сопел у разных моделей может варьироваться от 12 до 256 (иногда более). Поскольку размер каждого сопла меньше диаметра иглы (тоньше человеческого волоса), а количество сопел больше количества игл, то получаемое изображение четче (если чернила не расплываются на бумаге). Максимальная разрешающая способность массовых моделей достигает значения 1440 dpi.
Основными параметрами струйных принтеров являются технология печати, разрешение, количество цветов.
Технология печати. Под технологией печати понимается способ формирования капли чернил. В пьезоэлектрических печатающих головках (принтеры Epson) капля формируется и выстреливается за счет пьезоэффекта, в пузырьковых головках (принтеры Canon, Hewlett Packard, Lexmark) капля выстреливается за счет давления пузырька пара, возникшего при нагревании чернил. В пузырьковых печатных механизмах сопла печатающей головки изнашиваются быстрее, поэтому головка совмещена с картриджем и меняется вместе с опустевшим баллончиком чернил. Пьезоэлектрические головки обычно несменные, а замене подлежат лишь баллончики с чернилами, хотя головка тоже является расходным материалом и может быть заменена.
Разрешение. Разрешение характеризует величину самых мелких деталей изображения, передаваем при печати без искажения. Измеряется обычно в dpi (dot per inch) – число точек на дюйм. Разрешение принтера соответствует разрешению черно-белого изображения (т.е. только черно-белая картинка с разрешением 300 dpi будет напечатана на принтере с разрешением 300 dpi без искажений). Для полутоновых и цветных изображений элементы изображения (пиксели) создаются за счет растрирования. При этом для грубой оценки можно считать, что полутоновое и цветное разрешение будет равно указанному двухцветному, деленному на восемь. В связи с этим важно отметить различные подходы двух ведущих производителей струйных принтеров Hewlett Packard и Epson к улучшению своих принтеров. Если Epson непрерывно повышает разрешение (данный момент составляет в большинстве моделей 1440*720), то Hewlett Packard повышает качество печати за счет уменьшения объема капель чернил и печати в несколько слоев (разрешение при этом составляет в большинстве моделей 600*600). На темных и насыщенных участках обе методики дают примерно одинаковый результат, а на светлых участках и плавных цветовых переходах сказывается недостаток малого разрешения (виден растровый рисунок).
Количество цветов. В черно-белых принтерах, которые уже практически не выпускаются печатающая головка была одна (Epson Stylus 200, HP DeskJet 520). В так называемых трехцветных принтерах можно устанавливать только один картридж либо с черными чернилами, либо тремя чернилами CMY (Cyan, Magenta, Yellow – голубой, малиновый, желтый), такие принтеры пригодны для эпизодической печати цветных иллюстраций (HP DeskJet 400, Lexmark 1020). В четырехцветных принтерах реализуется модель печати CMYK (Cyan, Magenta, Yellow, Black) и применяется либо четыре отдельных картриджа, либо два – черный и цветной. Большинство современных принтеров четырехцветные, но наилучшее качество достигается при использовании шестицветных принтеров.
Формат бумаги струйных принтеров изменяется в диапазоне А4…А0.
Существуют модели принтеров, позволяющие вместо картриджа устанавливать сканирующую головку, что наделяет принтер возможностями простейшего рулонного сканера (некоторые модели Canon).
Основными расходными материалами струйных принтеров являются картриджи, в некоторых моделях совмещенные с печатающей головкой.
Многие струйные принтеры продаются по своей себестоимости и ниже, а основной доход производители получают от продажи расходных материалов, так стоимость недорогого принтера равна приблизительно стоимости 3-5 картриджей к нему.
Одним из способов снижения себестоимости черно-белой печати является заправка и их повторное использование. Такая возможность существует практически для всех принтеров, однако некоторые производители в этом случае отказываются т гарантии. Заправке лучше поддаются картриджи от пузырьковых принтеров, в то время как для принтеров с несменной головкой эксперименты по заправке слишком рискованны. Заправлять картридж следует не позднее суток с момента его исчерпания, иначе остатки чернил в соплах засыхают и картридж выходит из строя. Цветные картриджи заправлять не имеет смысла из-за невысоких объемов цветной печати, существенно худшего качества чернил и высокой стоимости комплекта заправки.
Лазерные и LED-принтеры
В лазерных принтерах используется электрографический принцип создания изображения. Этот процесс включает в себя создание рельефа электростатического потенциала в слое полупроводника с его последующей визуализацией. Визуализация осуществляется с помощью частиц сухого порошка – тонера, наносимого на бумагу. Наиболее важным элементом лазерного принтера является фотопроводящий цилиндр (фотовал или фотобарабан), полупроводниковый лазер и прецизионная оптико-механическая система, перемещающая луч.
Лазерные принтеры являются на данный момент самыми быстродействующими, их скорость печати может превышать 12 страниц в минуту.
Для лазерных принтеров, работающих с бумагой формата А4, стандартным разрешением является 600–1200 dpi.
Кроме лазерных, существуют так называемые LED-принтеры (Light Emitting Diode), в которых полупроводниковый лазер заменен «гребенкой» мельчайших светодиодов. В данном случае не требуется сложная оптическая система, что позволяет реализовывать более дешевые решения. В области светодиодных принтеров специализируется компания OKI.
Большинство параметров лазерных принтеров соответствует аналогичным параметрам струйных и матричных моделей.
Основным расходным материалом лазерных принтеров является картридж с тонером и фотовал, в некоторых моделях объединенные в общий узел.
Поскольку в отличие от матричной и струйной технологии, лазерная технология требует предварительной подготовки (растрирования) всей страницы, то для лазерных принтеров очень важен объем буферной памяти. Большинство моделей позволяют его наращивать.
Принтеры с термопереносом восковой мастики
Принцип работы принтера с термопереносом восковой мастики (termal wax transfer) состоит в том, что термопластичное красящее вещество, нанесенное на тонкую подложку, попадает на бумагу именно в том месте, где нагревательными элементами (аналогами сопел и игл) печатающей головки обеспечивается должная температура. Нагревательные элементы печатающей головки располагаются аналогично иглам матричных принтеров и соплам струйных принтеров. Позиционирование головки (как у маричных и струйных принтеров) осуществляется только в горизонтальном направлении, а подача бумаги осуществляется в вертикальном. Термопринтеры относятся к классу безударных поскольку механический контакт между бумагой и головкой отсутствуют.
Принтеры с термосублимацией красителя
Принтеры с термосублимацией (Dye Sublimation) используют технологию близкую к термопереносу, только термоэлементы печатающей головки нагреваются в данном случае до более высокой температуры. При сублимации переход вещества из твердого состояния в газообразное происходит, минуя стадию жидкости. Таким образом порция красителя сублимирует с подложки и осаждается на бумаге или ином носителе. Комбинацией цветов красителя можно подобрать практически любую цветовую палитру. Данная технология используется только для цветной печати и стоит довольно дорого. К основным преимуществам технологии относится практически фотографическое качество получаемого изображения и широкая гамма оттенков цветов без использования растрирования.
Принтеры с изменением фазы красителя
В основе работы устройств с изменением фазы красителя или с твердым красителем (Phase Change Ink-Jet, или Solid Ink-Jet) лежит следующий принцип. Восковые стержни для каждого первичного цвета красителя постепенно растворяются нагревательным элементом и попадают в отдельные резервуары. Расплавленные красители подаются оттуда специальным насосом в печатающую головку, работающую обычно на основе пьезоэффекта. Капли воскового красителя застывают на бумаге практически моментально, но обеспечивают необходимое сцепление. В отличие от обычной струйной технологии в данном случае не происходит ни просачивания, ни растекания, ни смешивания, поэтому такие принтеры могут работать практически с любой бумагой, при этом качество цветов безупречна и допустима двусторонняя печать.
Плоттеры
Устройство, позволяющее представлять выводимые из ЭВМ данные в форме рисунков и графиков на бумаге, называют обычно графопостроителями или плоттерами. Из этого определения следует, что в качестве плоттера может использоваться и соответствующий принтер. Первыми появились и широко используются перьевые плоттеры.
Существующие на сегодня перьевые плоттеры условно можно разбить на:
- плоттеры, использующие фрикционный прижим для перемещения бумаги в направлении одной оси и движения пера в направлении дугой;
- барабанные (рулонные) плоттера, работающие примерно также как и фрикционные, но использующие для перемещения перфорированной бумажной ленты специальный трактор;
- планшетные плоттеры, в которых бумага неподвижна, а перо перемещается по обеим осям.
Различные модели плоттеров могут иметь как одно так и несколько перьев различного цвета (обычно 4-8). Перья бывают трех типов: фитильные (заправляемые чернилами), шариковые (аналог шариковой ручки) и с трубчатым пишущим узлом (инкографы, заправляемые специальной тушью).
Связь плоттера с ЭВМ как правило осуществляется через последовательный (USB), параллельный (LPT) или SCSI интерфейс.
В плоттерах могут использоваться как специальные технологии, так и технологии знакомые по принтерам (термо-, лареная, LED, струйная). В настоящее время широко применяются струйные плоттеры, которые обеспечивают быстродействие в 4-5 раз выше перьевых и разрешение не менее 300 dpi.
1.4.2Модемы
МОДЕМ (МОдулятор – ДЕМодулятор) – устройство, предназначенное для передачи и приема информации по аналоговому каналу. (см. рис. 2.16). Для подключения к ЭВМ обычно используются интерфейсы RS232 или USB.
Упрощенно принцип работы модема можно описать следующим образом:
- для передачи информации модем «накладывает» ее на несущий высокочастотный сигнал (процесс изменения несущего сигнала по некоторому закону и называется модуляцией);
- сформированный таким образом сигнал передается по телефонной линии на принимающий модем;
- принимающий модем «разделяет» полезный сигнал и несущую частоту (т.е. демодулирует сигнал) и передает информацию в цифровом виде компьютеру.
Кроме модуляции/демодуляции современный модем производит сжатие данных, коррекцию шибок и еще ряд других операций, направленных на увеличение скорости передачи данных и повышение надежности связи.
Протоколы
Для того чтобы принимающий и передающий модемы понимали друг друга, связь между ними должна осуществляться по некоторым правилам. Наборы этих правил называются протоколами. Существуют протоколы модуляции, компрессии данных, коррекции ошибок и некоторые другие. Поддерживаемые протоколы являются основной характеристикой того или иного модема. Ниже приведены наиболее распространенные протоколы модуляции, которые практически и определяют скорость передачи данных.
-
Протокол
Максимальная скорость передачи (бит в секунду)
V.21
300
V.22
1200
V.22bis
2400
V.32
9600
V.32bis
14000
V.34
28800
V.34+
33600
V.90
Передача: 33600, прием: 56000
V.92
Модемы имеют обратную совместимость по протоколам. На практике максимальная скорость определяется не только возможностями протокола. Например, модем с протоколом V.90 может обеспечить наибольшее быстродействие в том случае, если провайдер также поддерживает V.90, АТС передающего и принимающего модема цифровые и между ними цифровой канал. Но даже при выполнении этих условий скорость редко превышает 40000-46600 бит/сек.
Что касается остальных протоколов, то наиболее предпочтительным является модем обладающий V.34 (V.34bis). Даже на плохих линиях, где модем не может работать на максимальной скорости, связь на V.34 предпочтительнее чем, например, на V32bis. Это связано с тем, что все модемы, поддерживающие V.34, обязательно поддерживают современные протоколы коррекции ошибок (V.42 и чуть более старый MNP4), что очень важно на отечественных линиях, а также протоколы компрессии данных (V.42bis и MNP5).
Теоретически, два модема, поддерживающие один и тот же протокол, должны обеспечивать одинаковую скорость и качество связи. Для идеальных телефонных линий это действительно так. На практике нет. Более дорогие модемы включают средства, позволяющие успешно бороться с помехами (например, эхо-компенсаторы, эквалайзеры, и т.п.), алгоритмы подбора скоростей и т.д., что может существенно увеличить скорость передачи и надежность соединения.
С практической точки зрения модемы можно разделить на следующие группы:
1. WinModem (или SoftModem). Их особенность в том, что они часть своих функций отдают центральному процессору, что позволяет значительно упростить их конструкции. Такие модемы обычно внутренние и выполнены в виде плат расширения. Единственными достоинствами программных модемов является низкая цена и простота замены прошивки (обычно смена драйвера). К недостаткам следует отнести высокие требования к системе (на практике не менее P200 с ОЗУ 32Мб), ориентация на ОС Windows (в следствии чего возникают проблемы в MS DOS, Linux и т.д.), весьма посредственная аналоговая часть (плохие приемо-передатчики).
2. Модемы различных производителей на базе чипсетов Rockwell, обладающие хорошим соотношением цена-качество. Такие модемы могут быть как внутренними так и внешними. Чипсеты Rockwell обеспечивают поддержку всех современных протоколов и сервисных функций. К недостаткам таких модемов можно отнести посредственную аналоговую часть (у некоторых производителей) и отсутствие адаптации (кроме модемов IDC) для отечественных линий (чаще всего это проявляется в неопределении сигнала «занято»).
3. Качественные внешние модемы, способные работать на самых неблагоприятных линиях (стоимость таких модемов 100-200 $). К ним можно отнести модемы ZyXEL Omni-288S, IDC 2814 BXL Voice, US Robotics Courier V. Everything. А также ряд других модемов этих производителей.
1.4.3Сканеры
Сканером называется устройство, которое служит для ввода в ПК цветных или черно-белых изображений (текстов, рисунков, фотографий и другой графической информации). Основным узлом сканера является считывающая (сканирующая) головка, состоящая из фоточувствительных полупроводниковых элементов, называемых приборами с зарядной связью — ПЗС (CDD - Change Couple Device — зарядное парное соединение). В основу последнего положена чувствительность проводимости p-n-перехода полупроводникового диода к степени его освещенности.
На рис. 2.17 дана общая классификация сканеров по критериям: прозрачность вводимого оригинала изображения, конструкция механизма движения, тип вводимого изображения.
Ручной сканер имеет ширину вводимого изображения не более 10 см. Для ввода в ПК какого либо документа с использованием ручного сканера необходимо без резких движений провести сканирующей головкой по этому изображению.
|
Рис. 2.17. Классификация сканеров. |
Настольные сканеры подразделяются на планшетные, рулонные и проекционные. В планшетных сканерах головка перемещается относительно бумаги с помощью шагового двигателя.
В рулонном сканере санирующая головка остается без движения, а относительно нее перемещается бумага со сканируемым изображением.
Проекционные сканеры отличаются тем. что сканируемый документ кладется на поверхность сканирования изображением вверх, блок сканирования находится сверху и перемещается только сканирующее устройство (напоминает фотоувеличитель). При этом можно сканировать проекции трехмерных объектов (основная отличительная черта этих сканеров).
Принцип сканирования изображения в цветном сканере показан на рисунке 2.18.
К основным характеристикам сканеров можно отнести битовую насыщенность (цветовую интенсивность) и разрешающую способность.
Битовая насыщенность характеризует количество битов данных, которое сканер использует для представления каждого пикселя изображения. Для создания «реального цвета», сканер должен обладать 24 разрядной битовой насыщенностью (16.7 млн. цветов). Современные сканеры могут обладать битовой насыщенностью в 30 36, 48 и выше бит.
Разрешающая способность, измеряется в точках на дюйм (dpi) и характеризует размер сетки пикселей, которая будет использоваться для сканирования изображения. Современные сканеры обладают разрешающей способность 600, 1200, 2400 и выше dpi. Чем большей разрешающей способностью обладает сканер, тем более мелкие детали будут различимы на результирующем изображении. Различают оптическое и интерполированное разрешение. Последнее означает, что программное обеспечение сканера создает дополнительные биты между теми, которые сканируются, искусственно увеличивая разрешение таким образом, что не всегда дает положительный результат. При этом качество сканирования зависит не только от DPI, но и от качества оптики сканера и яркости и качества светового источника.
Скорость сканирования изображения различных сканеров зависит от ряда причин и может составлять от нескольких секунд до нескольких минут.
Для сканирования прозрачных носителей (негативов или позитивов) сканеры должны быть оснащены слайд-адаптерами, что увеличивает их стоимость. При этом разрешающая способность для сканирования слайдов должна быть не мене 3000 dpi.
Наиболее распространенный интерфейс для подключения сканеров на данный момент – это USB, реже встречаются SCSI (более старые) и FireWire интерфейсы.
1.4.4Видеосистема
Видеосистема состоит из двух компонент: видеоадаптер (видеокарта) и монитор (дисплей). Видеокарта является устройством, осуществляющим интерфейс с ПК, монитор же соединен с видеокартой (см. рис. 2.19).
Имеются два режима работы видеосистемы; графический и текстовый. Графический режим отличается тем, что при этом видеокарта может управлять каждым отдельным пикселем экрана, при этом могут изменяться такие атрибуты отдельных точек, как цвет и мерцание. Текстовый режим отличается тем, что на экране отображаются только текстовые символы. В этом режиме число пикселей обычно не устанавливается, а вместо него указывается число символов и строк (80х25).
Видеоадаптеры
Видеоадаптер служит для программного формирования графических и текстовых видеоизображений и является промежуточным элементом между монитором и шиной ЭВМ. Изображение строится по программе, исполняемой ЦП, в чем ему могут помогать графические акселераторы и сопроцессоры. Существует ряд классов адаптеров (MDA, CGA, EGA, VGA и т.д.). В монитор адаптер посылает сигналы управления яркостью лучей RGB и синхросигналы строчной и кадровой разверток, т.е. адаптер является задающим устройством, а монитор со своими генераторами разверток должен вписываться в заданные параметры синхронизации.
Все компоненты видеоадаптера могут размещаться на одной плате расширения, или устанавливаться прямо на системной плате (встроенный видеоадаптер). Второй вариант менее эффективен, поскольку в этом случае для передачи видеоданных используется системная шина.
Стандартизацией в области видеосистем занимается международная организация VESA, благодаря чему обеспечивается совместимость как на уровне аппаратных средств, так и на уровне программного обеспечения.
Положение видеоадаптера обязывает его иметь по крайней мере два интерфейса – один для связи с монитором, другой для связи с процессором и памятью ЭВМ. Большинство адаптеров имеют интерфейс VGA (15 контактный RGB Analog применяется с адаптеров VGA очевидно отсюда и название), кроме того в настоящее наметилась тенденция использования телевизионных интерфейсов. В качестве магистральных интерфейсов сначала использовались шины ISA/EISA и MCA, но их производительности оказалось недостаточно. Для увеличения производительности была стандартизирована локальная шина VLB, но она использовалась лишь с процессорами i486. Затем для подключения видеоадаптеров на широком спектре процессоров использовалась шина PCI. Однако и ее производительности оказалось недостаточно. Поэтому на базе шины PCI для процессоров класса Pentium и старше был разработан специальный интерфейс AGP, имеющий производительность в 2, 4 и даже 8 раз выше чем PCI.
Ниже дана кратка характеристика видеоадаптеров в хронологическом порядке их появления:
MDA (Monochrome Display Adapter) – монохромный четырехцветный (цвета: обычный, подсвеченный, подчеркнутый, инверсный) адаптер, используемый для вывода только текстовой информации;
HGC (Hercules Graphic Controller) – графическое расширение MDA, обеспечивающий режим 720*350 с двумя битами на пиксель;
CGA (Color Graphic Adapter) – цветной графический адаптер. Режимы текстовый и графический, разрешение низкое особенной по вертикали.
EGA (Enhanced Graphic Adapter) – расширенны графический адаптер. Режимы текстовый и графический, кроме собственных видеорежимов поддерживал режимы адаптеров MDA и CGA.
PGA (Professional Graphic Adapter) – профессиональный графический адаптер с процессором трехмерной графики (1984 г.), исчез из-за высокой стоимости.
MCGA (Multi Color Graphic Array) – появился как встроенный графический адаптер на системной плате, поддерживал режимы CGA и др.
VGA (Video Graphic Adapter) – появился как встроенный графический адаптер на системной плате, затем сформировался как самостоятельный адаптер. Режимы текстовый и графический. Поддерживает режимы MDA, CGA, EGA и дополнительный (640*480). Обеспечивает на экране 256 цветов.
SVGA (SuperVGA) – группа видеоадаптеров, превосходящих VGA по количеству цветов и разрешению. Наиболее популярные режимы: 800*600, 1024*768 и 1280*1024 при количестве цветов 256, 216, 224,232.
Мониторы
Упрощенно структуру монитора можно описать следующим образом. Он состоит из вакуумной стеклянной трубки, передняя часть (экран) которой изнутри покрыта люминофором. В цветном мониторе непосредственно за экраном находится еще маска, представляющая собой пластину с рядом отверстий. Тыльная часть трубки содержит электронные пушки и управляющие схемы (модулятор и др.)
Электронный луч периодически сканирует весь экран (см. рис. 2.20), образуя на нем близко расположенные строки развертки (это называется растром) По мере движения луча по строкам экрана подаваемый на модулятор видеосигнал изменяет соответствующим образом яркость определенных люминофорных точек (пикселов), в результате чего образуется некоторое видеоизображение.
Наиболее важными параметрами монитора являются частота кадровой развертки (поддерживается на уровне 75-85 Гц в соответствии с современными медико-психологическими оценками нормального восприятия изображений человеком), частота строчной развертки (определяется произведением частоты кадровой развертки на количество выводимых строк в одном кадре, измеряется в килогерцах), полоса пропускания видеосигнала измеряется в мегагерцах (приблизительное значение этой величины может быть определено путем произведения количества точек в строке на частоту строчной развертки)
Чем выше значение кадровой развертки, тем устойчивее изображение. Как известно, человеческий глаз воспринимает смену изображений с частотой выше 20-25 Гц практически как непрерывное движение В мониторах используются два способа формирования изображения сплошная развертка (все строки кадра выводятся в течение одного периода кадровой развертки); чересстрочный (за одну половину периода кадровой развертки выводятся четные строки изображения, а за следующую—нечетные, т. е. один кадр делится на два поля). Последний способ позволяет увеличить разрешающую способность монитора в ущерб качеству изображения, но он больше подходит для отображения быстро движущихся образов.
В основу способа формирования цветного изображения положено свойство трехкомпонентности цветового восприятия (получение всех цветов путем аддитивного смешения трех цветовых потоков — красного, синего, зеленого). Цветовой оттенок результирующей смеси всегда зависит только от соотношения интенсивностей смешиваемых цветов (см рис. 2.21). Если цветные детали расположены близко, то с большого расстояния цвета отдельных деталей не различаются (пространственное усреднение цвета). Вся группа будет видна как окрашенная в один цвет, полученный в соответствии с законами смешения цветов. В электронно-лучевой трубке монитора цвет одного элемента (пикселя) формируется именно так из трех цветов, рядом расположенных люминофорных зерен (см, рис. 2.21).
На внутреннюю поверхность экрана нанесен люминофор трех основных цветов, а теневая маска (или апертурная решетка) обеспечивает попадание луча каждого цвета на свое зерно.
Рис.2.21. Модель аддитивного смещения цветов
В последнее время все большую и большую популярность приобретают жидко-кристаллические дисплеи (LCD — Liqid Cryctal Display). Такой монитор состоит из двух стеклянных пластин, между которыми находится масса, содержащая жидкие кристаллы, изменяющие свою оптическую структуру и свойства в зависимости от приложенного к ним электрического заряда. При этом кристаллы под воздействием электрического поля изменяют свою ориентацию, тем самым по разному отражая свет и делая возможным отображение информации. Жидкие кристаллы сами не светятся и поэтому подобные мониторы нуждаются в подсветке или во внешнем освещении. Имеются дисплеи, разработанные на основе технологии TFT (Thik Film Transistor), которая применяется в ПК типа Laptop фирмы Toshiba.
Общие параметры видеосистемы
В самом общем смысле видеосистему характеризуют:
1.Ттип адаптера (MDA, CGA и т.д.) и тип шины (ISA, PSI, AGP).
2. Поддерживаемый режим отображения: текстовый или графический.
3. Разрешающая способность, в графическом режиме определяется количеством точек, именуемых пикселями (Picture Element), отображаемых по горизонтали и вертикали. В текстовом режиме – количеством знакомест по горизонтали и вертикали и форматом знакоместа (количеством точек для формирования одного символа).
4. Количество цветов – максимальное количество одновременно присутствующих на экране цветов. Ограничивается количеством бит видеопамяти, задающих цвет элемента изображения.
5. Объем видеопамяти – определяет соотношение разрешения, количества цветов и видеостраниц.
6. Тип видеопамяти – обычная (DRAM [200 Мбайт/с]) или специальная (SGRAM– Synchronous Graphic RAM [530 Мбайт/с], VRAM – Video RAM [600 Мбайт/с], WRAM – Window RAM [800 Мбайт/с], RDRAM – Rambus RAM [1000 Мбайт/с], MBRAM – Multibank RAM [800 Мбайт/с]), что определяет производительность и предельную частоту регенерации.
7. Частота регенерации (Refresh Rate), или частота санирования и режим сканирования определяет качество (устойчивость ) выводимого изображения. Частота регенерации является частотой кадровой (вертикальной) развертки. Режим развертки: прогрессивный (построчный) или черезстрочный. Во втором варианте изображение менее стабильно.
8. Производительность видеоадаптера, определяется большим количеством факторов и зависит от типа адаптера, выбранного разрешения, количества цветов, частоты и режима развертки и т.д.
5 тема. Основы архитектуры персональных компьютеров.
Этапы развития процессоров современных ЭВМ. Архитектура процессоров современных ПК. Модели процессоров. Качественные отличия процессоров различных фирм. Структура микропроцессора. Интерфейсные шины и организация памяти. Процессоры выполнения команд и обработки данных. Способы производительности процессора. Многопроцессорные системы. Параметры и характеристики процессоров современных пк. Обзор периферийных устройств ПК.
В соответствии с наиболее известной классификацией архитектур ВС, предложенной в 1966 году М.Флинном и базирующейся на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором, выделают четыре типа архитектур ВС: SISD, MISD, SIMD, MIMD:
SISD (single instruction, single data) - одиночный поток команд и одиночный поток данных. К этому классу относятся, прежде всего, классические последовательные машины, или иначе, машины фон-неймановского типа, например, PDP-11 или VAX 11/780. В таких машинах есть только один поток команд, все команды обрабатываются последовательно друг за другом и каждая команда инициирует одну операцию с одним потоком данных. Не имеет значения тот факт, что для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка. Сегодня многие на многих мейнфреймах установлено несколько процессоров, но каждый из них исполняет никак не связанные потоки инструкций. Таким образом, такие системы должны рассматриваться как несколько SISD машин, работающих в различных пространствах данных.
SIMD (single instruction, multiple data) - одиночный поток команд и множественный поток данных. В архитектурах подобного рода сохраняется один поток команд, включающий, в отличие от предыдущего класса, векторные команды. Это позволяет выполнять одну арифметическую операцию сразу над многими данными - элементами вектора. В таких системах обычно очень много модулей обработки (от 1024 до 16384), которые и позволяют за одну инструкцию обрабатывать несколько данных.
MISD (multiple instruction, single data) - множественный поток команд и одиночный поток данных. Определение подразумевает наличие в архитектуре многих процессоров, обрабатывающих один и тот же поток данных. Однако ни Флинн, ни другие специалисты в области архитектуры компьютеров до сих пор не смогли представить убедительный пример реально существующей вычислительной системы, построенной на данном принципе.
MIMD (multiple instruction, multiple data) - множественный поток команд и множественный поток данных. Этот класс предполагает, что в вычислительной системе есть несколько устройств обработки команд, объединенных в единый комплекс, каждое из которых работает со своим потоком команд и данных. Основное отличие этих систем от многопроцессорных SIMD-машин состоит в том, что инструкции и данные связаны, потому что они относятся к одной и той же исполняемой задаче. Существует очень много различных классов MIMD машин, и в классификации Флинна это никак не отражено.