А. А. Гришаев этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел природа света 1 Как начиналась сказка

Вид материалаСказка
3.9 Как Эддингтон изображал искривление лучей света тяготением Солнца.
3.10 Квантовые перебросы: скоррелированные перераспределения энергии.
3.11 Крах концепции фотона.
Подобный материал:
1   2   3   4   5   6

3.9 Как Эддингтон изображал искривление лучей света тяготением Солнца.

Традиционные представления о свете, как о летящих фотонах, подразумевают, что фотоны являются полноценными частицами, которые подвержены действию тяготения. Т.е., фотон, пролетающий вблизи массивного тела, должен искривлять свою траекторию из-за гравитационного притяжения к «силовому центру». Эйнштейн утверждал, что, помимо этого гравитационного притяжения, существует ещё один механизм, дополнительно искривляющий траекторию пролетающего фотона (см., например, [Э1]). Согласно общей теории относительности (ОТО), по мере приближения к «гравитирующему телу», замедляется темп течения времени, и, соответственно, уменьшается скорость света. А известно, что градиент скорости света вызывает рефракцию, т.е. искривление траектории света в ту сторону, где его скорость меньше. Предсказанная величина поворота траектории фотона из-за этой «гравитационной рефракции» оказалась такая же, как и из-за чисто гравитационного притяжения фотона, т.е. теория Эйнштейна предсказывала удвоенное искривление луча, по сравнению с классическими предсказаниями. Если на опыте обнаружился бы удвоенный эффект – это подтвердило бы общую теорию относительности.

Такие опыты были проведены; но прежде чем о них говорить, изложим предварительные соображения, следующие из наших представлений о свете. Во-первых, фотонов, в традиционном понимании, не существует: кванты световой энергии перебрасываются непосредственно с атома на атом, не проходя по разделяющему атомы пространству (3.4). Раз нет летящих фотонов, то нет и гравитационного воздействия на них. Направление продвижения кванта света определяется только Навигатором (3.4), в работу которого тяготение не вмешивается. Во-вторых, сегодня можно считать твёрдо установленным, что имеют место гравитационные сдвиги квантовых уровней энергии в веществе, но они обусловлены отнюдь не «гравитационным замедлением времени» - которого не существует в природе (1.14), а, значит, не существует и зависимости скорости света от гравитационного потенциала, которая вызывала бы «гравитационную рефракцию». Таким образом, мы не усматриваем причин ни для действия тяготения на сам свет, ни для «гравитационной рефракции».

Но нас уверяют, что астрономам удалось обнаружить искривления лучей света от звёзд, проходившего вблизи Солнца – в согласии с предсказаниями ОТО! Оказалось, что эти уверения гроша ломаного не стоят. Астрономы, действительно, развернули бурную деятельность – но при этом они упорно выдавали желаемое за действительное.

Особенно на этом поприще отличился Эддингтон в 1919 г. Идея опыта заключалась в том, чтобы сфотографировать участок звёздного неба в окрестностях Солнца и сравнить его с опорной фотографией – того же участка, но в отсутствие Солнца. Искомый эффект заключался бы в соответствующих радиальных смещениях изображений звёзд – от Солнца. Но чтобы звёзды в окрестностях Солнца были заметны, съёмку следовало проводить в условиях полного солнечного затмения – ради чего и была организована астрономическая экспедиция.

Вся эта затея была изначально бессмысленна по совсем простой причине – узнавая о которой, сегодняшние релятивисты впадают в ступор. Дело в том, что, при съёмках неба в окрестностях Солнца, свет от звёзд проходил сквозь солнечную корону – неоднородную нестационарную среду – и испытывал при этом непредсказуемую рефракцию на неоднородностях плотности вещества, отчего изображения звёзд на фотопластинке могли смещаться на произвольные величины в произвольных направлениях. Совершенно ясно: ловить было нечего. Но даже если бы Эддингтону сказочно повезло, и, на время его наблюдений, вместо неспокойной плазмы солнечной короны имел бы место межпланетный вакуум, то и тогда его фотографии ровным счётом ничего не доказали бы – ввиду катастрофически недостаточной точности измерений.

Действительно, в замечательной статье [И1], написанной специалистом по практической астрономии, дан анализ погрешностей в эксперименте Эддингтона. По Эйнштейну, ожидаемая величина отклонения луча составляла 1.7 угловых секунды при пролёте света впритирку с краем Солнца. При пролёте на двух солнечных радиусах – ожидаемый эффект в два раза меньше, на трёх радиусах – в три раза меньше, и т.д. Из-за засветки прилегавшей к Солнцу области, реально наблюдались звёзды, находившиеся на небесной сфере на удалениях от 2 до 8 радиусов Солнца от его центра, при этом ожидаемый эффект составлял от 0.8 до 0.2 угловых секунд. По классическим представлениям, эффект был бы ещё в два раза меньше. «Основной целью экспедиции было опровергнуть теорию Ньютона и подтвердить теорию Эйнштейна. Следовательно, в данном эксперименте точность измерения должна была быть менее 0.1", что даже сейчас является фактически недостижимой задачей для наземных астрометрических измерений» [И1].

В самом деле, на выездной астрономической экспедиции мог использоваться только широкоугольный телескоп, с малым диаметром зеркала, а. значит, и с малым угловым разрешением. «Теоретическое значение кружка рассеяния для 300 мм телескопа равно 0.8"», а в реальности, из-за недостатков оптической системы, «угловой диаметр пятна рассеяния должен был составлять не менее 2 - 2.5", что в 3 раза превышало максимальную измеряемую величину» [И1]. Неидеальность гидирующего механизма должна была дать дополнительное размывание кружка рассеяния – минимально, на несколько десятых угловой секунды. Впечатляет и погрешность из-за зернистости фотопластинок. При поле зрения телескопа 4х4 градуса и стандартном размере пластинки, 18х24 см, «1 угловая секунда соответствовала 13 микронам на пластинке» [И1]. В 1919 г. «реальный размер зерна был порядка 20 - 30 микрон, а полученные "изображения" звезд представляли собой одно или два засвеченных зерна» [И1]. При этом ошибка определения положения звезды составляла, как минимум, одну угловую секунду. В довершение ко всему этому, Эддингтон наделал ещё и методологических ошибок, самой непростительной из которых считают вот какую. «Опорная фотопластинка была снята в январе в Англии (угол эклиптики над горизонтом - 20 град.), а затмение снималось на экваторе в 13:30, т.е. Солнце было в зените» [И1]. Атмосферная рефракция для этих двух случаев сильно различается, а точно учесть эти различия на фотопластинках было весьма проблематично – «в любом случае, остается ошибка не менее десятых долей секунды» [И1]. Сказанного с запасом достаточно, чтобы сделать логичный вывод: «В данном эксперименте измеряемая величина находилась глубоко под ошибками измерения… вывод о правильности ОТО, основанный на результатах этой экспедиции, является неправомерным и принципиально некорректным» [И1]. В условиях, когда инструментальные и методологические погрешности превышали искомый эффект, как минимум, в разы, Эддингтон пустился на хитрость: он отбраковал подавляющее большинство фотопластинок, расценив их как «неудачные». Методику этой отбраковки он не огласил – но едва ли можно сомневаться в том, что руководящим критерием было согласие с предсказаниями Эйнштейна: следовало учитывать только «правильные» смещения звёзд и не учитывать «неправильные». С помощью такой прогрессивной методики – т.е., через устранение из массива данных всего «лишнего» - можно «доказать» что угодно!

Вот почему, дорогой читатель, подробности эксперимента Эддингтона вы не найдёте в свободном доступе. Не странно ли это: скрывать от научной общественности детали того, как происходило «триумфальное подтверждение теории Эйнштейна»? Да нет: те, кто это скрывают – знают, что делают. Ибо не было там вообще никакого подтверждения – а не то что «триумфального».

Нам скажут, что были ведь другие экспедиции, повторившие результат Эддингтона! Вот именно – повторившие. Тропка была уже протоптана! Использовалось похожее оборудование и аналогичная методика обработки результатов – «они принципиально не обеспечивают суб-секундных точностей» [И1]. И это, напоминаем – без учёта хаотической рефракции света в солнечной короне! А ведь она, несомненно, имела место. «На фотографиях был получен набор хаотически смещенных во всех направлениях… "изображений звезд". Все это напоминало психиатрический тест - "пятна Роршаха", в которых, при желании, можно увидеть все что угодно» [И1].

Таким образом, ни Эддингтон, ни его последователи отнюдь не доказали, что свет испытывает, во-первых, действие тяготения, а, во-вторых, «гравитационную рефракцию» - обусловленную, якобы, зависимостью скорости света от гравитационного потенциала. Значит, эти эксперименты не бросают тень на логику «цифрового» мира, согласно которой, ни действия тяготения на свет, ни зависимости скорости света от гравитационного потенциала не существует в природе.

Уместно добавить, что ситуация совершенно аналогична и для случая радиоволн. Поэтому экспериментальные подтверждения действия тяготения на радиоволны и наличия гравитационного «притормаживания» радиоволн, проходящих вблизи массивного тела, получали по тем же принципам, как и в случае со светом – т.е. через заведомый обман. Так, для радиоимпульса, пролетающего рядом с Солнцем, гравитационное притормаживание дало бы увеличение времени его полёта, эквивалентное увеличению пути на 60 км! Шапиро утверждал, что именно это он и обнаружил при радиолокации Венеры, когда она была вблизи противостояния с Землёй. Об этом он заявил в статье с одиозным названием «Четвёртое подтверждение ОТО» [Ш4], но не привёл никаких экспериментальных данных – призывая верить ему на слово. С тех пор, в среде физиков, словосочетание «эффект Шапиро» имеет двойной смысл. Во-первых, это притормаживание радиоимпульсов при пролёте вблизи массивного тела. Во-вторых, это эффект, который «обнаружен» только на словах – без подтверждающих его экспериментальных фактов. Но этого позора оказалось мало. Спустя три года после своего «подтверждения ОТО», Шапиро предложил использовать радиоинтерферометры – пары радиотелескопов, разнесённых на межконтинентальные расстояния – для обнаружения гравитационного искривления траектории радиоимпульсов вблизи Солнца, принимая радиоимпульсы от квазаров [Ш5]. Надо иметь в виду, что, при работе радиоинтерферометра, информация о направлении на радиоисточник извлекается как раз из разности моментов прихода радиоимпульса на тот и другой радиотелескоп. А эта разность, в данном случае, сильно подвержена «эффекту Шапиро» - причём, в обоих его смыслах. Как же при этом удавалось подтверждать предсказания ОТО насчёт гравитационного искривления траектории радиоимпульса (см., например, [Л6])? На счастье экспериментаторов, опять же, имела место хаотическая рефракция радиоизлучения на неоднородностях плотности вещества в солнечной короне. Учесть эту рефракцию было невозможно, поэтому экспериментаторы помалкивали о ней в своих статьях. Зато статистика результирующих искривлений траекторий радиоимпульсов набиралась богатейшая – и из массива данных следовало отобрать лишь те случаи, которые «подтверждали ОТО». Всё тайное станет явным!


3.10 Квантовые перебросы: скоррелированные перераспределения энергии.

Опыт Басова (3.3) с полной очевидностью показывает, что световая энергия может быть переброшена на расстояние, практически, мгновенно – по крайней мере, для расстояний в несколько метров. Этот результат убийственен не только для теории относительности, но и для традиционных представлений о свете как о порциях энергии, летящих в пространстве между атомами со скоростью c. Выше (3.4) мы излагали, что кванты световой энергии отнюдь не летят в пространстве между атомами. Ведь, по логике «цифрового» мира, обладателем физических энергий в любых её формах может быть только вещество (1.1). Значит, и световая энергия может быть локализована только на веществе – на атомах. Отсюда и следует, что световая энергия должна передаваться с атома на атом без прохождения по разделяющему эти атомы пространству.

Такую «над-пространственную» передачу световой энергии на расстояние, непосредственно с атома на атом, могут обеспечить, на наш взгляд, лишь соответствующие программные средства, управляющие «цифровым» миром. Выше мы уже говорили о Навигаторе (3.4), который сканирует пространство со скоростью c в поисках атома-адресата, которому может быть переброшен квант световой энергии с возбуждённого атома – и, после того как атом-адресат найден, производится почти-мгновенный переброс этого кванта. Но, когда мы говорили об этих квантовых перебросах энергии возбуждения с атома на атом, у читателя могло сложиться впечатление, что энергия возбуждения прибавляется к энергии атома – так, что приобретение энергии возбуждения атомом увеличивает его полную энергию, а избавление от энергии возбуждения, наоборот, полную энергию уменьшает. Такие представления, на наш взгляд, некорректны, поскольку у атома, отдающего квант энергии возбуждения, и у атома, приобретающего такой же квант, полные энергии остаются прежними.

В самом деле, хорошо известно, что для ионизации атома, находящегося в возбуждённом состоянии, требуется сообщить ему меньшее количество энергии, чем для его ионизации из основного состояния. Причём, сумма энергии возбуждения и энергии связи атомарного электрона является при этом постоянной величиной, равной энергии ионизации из основного состояния. Напрашивается вывод о том, что энергия возбуждения не передаётся атому откуда-то извне – она появляется за счёт такой же по величине убыли энергии связи. Более подробно мы будем говорить об этом в 4.4; сейчас же обратим внимание на то, что у атома энергия возбуждения и энергия связи образуют сопряжённую пару энергий: увеличение одной из них происходит за счёт уменьшения другой, и наоборот – а их сумма остаётся постоянной. Применительно к распространению света это означает, что, при так называемом поглощении кванта света, атом не приобретает энергию сверх той, которую он имел: здесь происходит всего лишь превращение части энергии связи в энергию возбуждения – а полная энергия атома остаётся прежней. Аналогично, при так называемом излучении кванта, происходит противоположное перераспределение энергий в атоме – опять же, с оставлением его полной энергии прежней. Мы приходим к парадоксальному выводу: при квантовом перебросе энергии возбуждения с атома на атом, соответствующая порция энергии никуда не перемещается – полная энергия атома-отдающего не уменьшается, а полная энергия атома-принимающего не увеличивается. Другими словами, квантовый переброс энергии возбуждения представляет собой всего лишь скоррелированные перераспределения энергий у пары атомов: соответствующая управляющая программа скачком опускает вниз «разделительную планочку» между энергией возбуждения и энергией связи у атома-отдающего, и на столько же поднимает вверх эту «планочку» у атома-принимающего. Эти-то скоррелированные перераспределения энергий у пары атомов и порождают иллюзию перемещения кванта световой энергии с одного атома на другой. Как ни дико это выглядит на первый взгляд, но при распространении света никакого потока энергии в пространстве нет, ибо каждый атом остаётся при своём! Заметим, что такой подход легко и непринуждённо объясняет, почему при распространении света не переносится импульс (3.2)!

Ох, как трудно ортодоксам принять вывод об отсутствии потока энергии при распространении света! Больно сильно этот вывод задевает иллюзии, которые уютно утряслись в их подсознании. «Вы утверждаете, что по лазерному лучу не передаётся энергия? – радуются они. – Но это же смешно, молодой человек! Лазерный луч поджигает дерево, плавит и испаряет металл! Ясно же, что температура мишени повышается оттого, что туда вкачивается энергия, которая приходит по лазерному лучу!» Минуточку, любезные. То, что температура мишени повышается – это, действительно, ясно. Но температура мишени повышается вовсе не из-за того, что в неё вкачивается энергия. Вы, любезные, сначала разберитесь, что такое «температура» - это вовсе не мера энергосодержания. По всем канонам термодинамики и статистической физики, температура характеризует не энергосодержание ансамбля частиц, а статистику распределения энергий в этом ансамбле – т.е. как раз соотношения между энергиями из сопряжённых пар (5.9), в частности, энергий возбуждения и энергий связи у атомарных электронов. Лазерный луч всего лишь деформирует эти соотношения: энергии возбуждения в атомах мишени растут, а энергии связей в них уменьшаются, но суммы тех и других остаются прежними. Температура мишени при этом повышается, а полная энергия мишени – нет. При лазерном испарении и лазерной ионизации вещества всё происходит совершенно аналогично – но здесь в игру с превращениями энергий вступают кинетические энергии частиц, которые, вместе с собственными энергиями частиц, также образуют сопряжённые пары (5.9). Всё происходит в согласии с принципом автономных превращений энергии (4.4): увеличение температуры вещества обусловлено лишь перераспределениями энергий его частиц, но полные их энергии при этом не изменяются.

Таким образом, впечатляющим спецэффектам при лазерном воздействии на вещество ничуть не противоречит вывод о том, что при распространении света происходят перебросы, с атома на атом, не энергии, а всего лишь её перераспределений.


3.11 Крах концепции фотона.

Приведём краткую сводку особенностей, ставящих под сомнение существование фотонов – как их традиционно представляют, т.е. как автономных порций световой энергии, летящих в пространстве со скоростью света.

Порции световой энергии существуют лишь на атомах: они перебрасываются на расстояние непосредственно с атома на атом, без прохождения по разделяющему их пространству – причём, практически, мгновенно (3.3). При этом не переносится импульс: никакой «отдачи» у атомов при квантовом перебросе световой энергии не происходит (3.2). Этот вывод совершенно естественен, если учесть, что при квантовом перебросе световой энергии производится не перенос энергии с атома на атом, а производятся всего лишь скоррелированные перераспределения энергий у этих атомов – так, что их полные энергии остаются прежними (3.10).

Фотоны, далее, не испытывают гравитационных сдвигов частоты (2.7): этим сдвигам подвержены лишь квантовые уровни энергии в веществе (4.7). Совершенно аналогично, фотоны не испытывают квадратично-допплеровских сдвигов частоты: этим сдвигам также подвержены лишь квантовые уровни энергии в веществе (4.7).

Фотоны не испытывают и линейно-допплеровских сдвигов частоты (1.8): с этими сдвигами имеет дело Навигатор (3.4), но сама перебрасываемая порция энергии не изменяется от того, что отдающий и принимающий атомы каким-то образом движутся.

Фотоны не могут превращаться в вещество, и обратно. Традиционные представления об аннигиляции и рождении электрон-позитронных пар, в которых подразумевается полноценность фотона как частицы, основаны на недоразумениях. Ниже (4.8) мы приведём анализ экспериментов, который показывает, что электрон и позитрон при аннигиляции не исчезают полностью: излучая, при таком событии, один гамма-квант с энергией 511 кэВ, они образуют структурное образование с массой электрона и нулевым электрическим зарядом – которое, при сообщении ему достаточной энергии возбуждения, способно диссоциировать на пару электрон-позитрон. К тому же, не наблюдалось прямого превращения гамма-кванта в электрон-позитронную пару: эта пара вылетает из ядра, в которое попадает гамма-квант с достаточной энергией (4.8). Таким образом, о взаимопревращениях между веществом и фотонами говорить не приходится.

Фотон, конечно, не обладает никаким спином. Спин – это придумка теоретиков даже для случая электрона (4.2), а для случая фотона – это, если можно так выразиться, придумка в квадрате. Не существует ни физической модели спина фотона, ни экспериментальных подтверждений его наличия. Какие тут могут быть подтверждения? «Подтверди то – не знаю, что» - не иначе. Впрочем, из высоконаучных соображений следует, что частицы с целым спином – который приписан и фотону – обязаны подчиняться вполне определённой квантовой статистике, по типу Бозе-Эйнштейна. А именно: в коллективе таких частиц, все они стремятся пребывать в одинаковых состояниях – в частности, иметь одинаковую энергию. И нас пытаются убедить в том, что фотоны именно так себя и ведут. И даже пример приводят: лазерную генерацию! Тогда позвольте заметить, что лазерное излучение составляет ничтожнейший процент от всего излучения в природе: оно является не правилом, а жалким исключением. Хуже того, даже в случае лазера следует очень постараться, чтобы подавить все моды, кроме одной, чтобы обеспечить одночастотный режим генерации – ведь любая другая мода «пролазит» при малейшей возможности! Где же оно, стремление фотонов иметь одинаковую энергию?! Да и вообще, говорить о статистике фотонов просто смешно. Сделай одни условия генерации – «статистика» фотонов будет одна, а сделай другие – и «статистика» будет другая. Детский сад какой-то!

И, в довершение ко всему этому, на фотоны не действует тяготение (3.9)!

Что же остаётся от традиционной концепции фотона? Эта концепция совершенно излишняя с позиций нашей модели «цифрового» физического мира, процессы в котором происходят в результате работы программных предписаний, обеспечивающих выполнение физических законов. Так, распространение света управляется Навигатором (3.4). Такой подход избавляет от необходимости приписывать фотону необъяснимые свойства, прикрываемые термином «корпускулярно-волновой дуализм», поскольку за особенности распространения света, в том числе и за волновые свойства, отвечает Навигатор. При таком подходе немедленно устраняются парадоксы, связанные с «редукцией волнового пакета» для фотона в явлениях интерференции и дифракции, с «интерференцией» фотонов, летящих поодиночке, с «интерференцией» фотона с самим собой, и т.п.

Физика радикально упрощается, если осознать, что никаких фотонов нет!


Ссылки к Разделу 3.


А1. С.Артёха. Критика основ теории относительности. Веб-ресурс ссылка скрыта

А2. Н.Е.Алексеевский и др. ЖЭТФ,