Учебное пособие. Нижний Новгород: Издательство ннгу им. Н. И. Лобачевского, 2004. 212 с. Isbn 5-85746-804-3

Вид материалаУчебное пособие

Содержание


2.1. Классы иммуноглобулинов
Физико-хими­ческая и био­логическая характеристика
2.2. Активный центр антител
Высокие концентрации соли, низкие и высокие значения рН могут ослаблять и разрушать взаимодействие антиген-антитело.
2.3. Биологические функции антител
Подобный материал:
1   2   3   4   5   6

2.1. Классы иммуноглобулинов


IgM

Имеет молекулярную массу, равную 950 кДа. Состоит из пяти мономеров, каждый из которых включает две тяжелые μ-цепи и две легкие цепи (каппа или лямбда). Мономеры объединены в области Fc-участков в единый пентамер дисульфидными мостиками и соединительной J-цепью (джей), имеющей молекулярную массу 15 кДа (рис. 4).

В состав μ-цепи входят один вариабельный и 4 константных домена (Сμ1-Сμ4). Fab-участки молекул IgM обладают гибкостью за счет остатков пролина Сμ2-домена, что придает подвижность активным центрам антител и позволяет им эффективно взаимодействовать с антигенами.

Молекула IgM имеет 10 активных центров (валентность равна 10). IgM обладает выраженной антибактериальной активностью, способностью связывать комплемент, не проникает через плацентарный барьер. Первым синтезируется в ответ на антигенную стимуляцию организма.

Наиболее ранние антитела относятся к иммуноглобулинам класса М, что нередко используется в диагностике инфекционных заболеваний. Они же первыми появляются в процессе онтогенеза и филогенеза.

Сывороточная концентрация IgM составляет 0,5-2 мг/мл (~5 % от общего количества сывороточных иммуноглобулинов).

На мембране В-лимфоцитов присутствует мономерная форма IgM, выполняющая функцию основной составляющей В-клеточного рецептора.

Таким образом, IgM является «первым» иммуноглобулином, т.к. эволюционно он впервые появляется у представителей класса Круглоротых, с него начинается синтез иммуноглобулинов у новорожденных, он первый образуется при иммунном ответе.


Рис. 4. Строение иммуноглобулина М

IgG

IgG является основным иммуноглобулином, т.к. 80% антител крови относится именно к этому классу. Он имеет молекулярную массу 150-170 кДа. Состоит из двух тяжелых (γ) и двух легких цепей (κ или γ). В состав тяжелой цепи входит один вариабельный и три константных домена. Между первым и вторым константными доменами находится шарнирный участок, содержащий остатки пролина и цистеина, определяющие его гибкость. Содержится в сыворотке крови в наибольшей концентрации в сравнении с другими классами иммуноглобулинов (до 80% от общего количества сывороточных иммуноглобулинов). Средняя сывороточная концентрация — 12 мг/мл. В крови человека среди четырех подклассов иммуноглобулинов класса G более половины приходится на IgG первого подкласса.

Биологическая роль IgG разнообразна. Антитела класса IgG обладают выраженной антибактериальной, антивирусной активностью, в определенных условиях проявляют противоопухолевое действие. Взаимодействуют с белками системы комплемента. Проникают через плацентарный барьер. Это означает, что материнские антитела класса IgG обладают защитной функцией в отношении организма эмбриона и новорожденного ребенка.

IgA

Мономер с молекулярной массой 160 кДа. Существует также димерная форма IgA. Характерен для секретов организма (слюна, слезы, пот, молозиво, пищеварительный сок, выделения слизистых поверхностей). В сыворотке крови его содержание незначительно и составляет 10-15% от общего количества сывороточных иммуноглобулинов. Тем не менее, считается, что среди иммуноглобулинов всех классов IgA синтезируется в наибольших количествах (больше, чем IgG). В сутки у человека продуцируется до 3 г IgA.

Тяжелая α-цепь построена из вариабельного домена, трех константных доменов и шарнирного участка. У человека известны два подкласса — IgAl и IgA2. Сывороточный IgA обычно представлен мономером. IgA, секретируемый на поверхность слизистых оболочек, — это димер, образованный двумя мономерами и соединительной J-цепью (джей-цепь). Тяжелые цепи и J-цепь скреплены дисульфидными связями (рис. 5).

Димерный IgA секретируется плазматическими клетками под эпителиальными клетками слизистых оболочек. Затем взаимодействует со специфическим полииммуноглобулиновым рецептором на базальной стороне эпителиальных клеток слизистой оболочки, и образовавшийся комплекс подвергается эндоцитозу с последующей транспортировкой к поверхности клетки, обращенной в просвет органа. Когда комплекс рецептора и IgA достигает мембраны, рецептор подвергается протеолизу, и часть рецептора вместе с димерным IgA выходит на поверхность слизистой в результате экзоцитоза. В целом процесс называется трансцитозом.


Рис. 5. Строение иммуноглобулина А


Димерный IgA, секретируемый вместе с фрагментом полииммуноглобулиновым рецептором, называется секреторным компонентом. Комплекс димера и секреторного компонента называется секреторным IgA. Именно в такой форме IgA присутствует на слизистых поверхностях и в секретах молочных, потовых, слюнных, слезных желез. Здесь он связывает инфекционные агенты, предотвращая их проникновение с внешних поверхностей в ткани организма.

IgE

Мономер с молекулярной массой 185 кДа. Включает две ε-цепи и две легкие цепи. ε-цепь содержит один вариабельный и четыре константных домена. В сыворотке крови присутствует в очень небольших концентрациях. В норме составляет не более 0,1% от общего количества сывороточных иммуноглобулинов. Более 90% синтезируемого плазматическими клетками IgE секретируется в слизистый экзосекрет желудочно-кишечного тракта. Биологическая функция заключается в защите от внеклеточных паразитов, хотя она полностью не выяснена, и резкое увеличение количества IgE является патогенетическим признаком при аллергических реакциях.

Принимает участие в развитии аллергических реакций. Fc-участком он связывается с Fc-рецептором на поверхности тучных клеток и базофилов. Затем активным центром IgE взаимодействует с аллергеном, что приводит к сшиванию молекул Fc-рецептора на поверхности клетки. После связывания аллергена на поверхности тучных клеток и базофилов с последующей сшивкой Fc-рецепторов клетки получают сигнал к секреции вазоактивных аминов, что приводит к развитию IgE-зависимой аллергической реакции.

IgD

Мономер с молекулярной массой 185 кДа. Тяжелая цепь IgD по­строена из одного вариабельного и трех константных доменов. Содер­жится в сыворотке в исчезающих количествах. Функция сывороточного IgD неизвестна. На поверхности В-лимфоцитов присутствует мембран­ная форма IgD, входящая в состав В-клеточного рецептора.

Активные центры антител, продуцируемых разными клонами плаз­матических клеток, различаются. Они построены из варьирующих по своему строению участков V-доменов легкой и тяжелой цепей. Такие участки называются гипервариабельными регионами.

Таблица 2.1. Характеристика разных классов иммуноглобулинов



Физико-хими­ческая и био­логическая характеристика

IgG

IgA

IgM

IgD

IgE

Подклассы

G1.G2, G3,G4

A1,A2

M1, M2





Молекулярная масса (кДа)

150-170

160, 380

950

190

185

Число мономе­ров

1

1 или 2

5

1

1

Изотип

γ1-4


α1-2

μ

δ

ε

Число C-доменов

3

3

4

4

3

Валентность

2

2 или 4

10

2

2

% от общего уровня Ig

80

12

6

0-0,1

0-1

Концентрация в сыворотке, г/л

8-16

1,4-4,2

0,5-1,9

0,003-0,4

0,0001-0,002

Активация комплемента

+



+





Проникновение через плаценту

+









Связывание с Fc-рецептором фагоцитов

+







+

Связывание с Fc-рецептором тучных клеток









+

Способность к нейтрализации бактерий

+

+

+





Секреция через эпителий сли­зистых



+

+



+


2.2. Активный центр антител

Аминокислотная последовательность V-доменов иммуноглобулинов разных клонов различна (вариабельна) не на всем протяжении. Многие аминокислоты консервативны. В первую очередь это аминокислоты, необходимые для поддержания общего строения (каркаса) V-домена. Участки аминокислотной последовательности, расположенные между вариабельными регионами, называют каркасными регионами (FR) (рис 6).

Каркасные регионы образуют β-складчатую структуру, формирующую цилиндрическую форму V-доменов. Гипервариабельные регионы (CDR) образуют между каркасными регионами петли, локализованные на вершине V-доменов.

В структуре цельной молекулы иммуноглобулина VH- и VL-домены объединены. Их гипервариабельные регионы примыкают друг к другу и создают единый гипервариабельный участок на вершине Fab-фрагментов в виде кармана. Такой участок является антигенсвязывающим центром молекулы антитела.

Антигенсвязывающий центр определяет специфичность антитела, образуя поверхность, комплементарную эпитопу антигена (антигенной детерминанте).


Рис. 6. Схема строения активного центра антитела. FR — каркасные регионы, CDR — гипервариабельные регионы


Антитела связывают антиген нековалентно. Площадь контакта антигена и антитела оценивается в 700 А2. Силы, принимающие участие во взаимодействии антиген-антитело:

электростатические взаимодействия, возникают между заряженными боковыми группировками аминокислот в виде солевых мостиков;

водородные связи, возникают между электрическими диполями;

силы Ван дер Вальса, формируются вследствие флуктуации электронных облаков вокруг противоположно поляризованных соседних атомов;

гидрофобные взаимодействия, происходят в тех случаях, когда две гидрофобные поверхности стремятся сблизиться, вытесняя воду.

Высокие концентрации соли, низкие и высокие значения рН могут ослаблять и разрушать взаимодействие антиген-антитело.

Иммунный ответ на каждый отдельный антиген включает продукцию множества молекул антител, синтезируемых разными плазматическими клетками и имеющих разное строение активного центра и изотип. Вследствие различий в строении активных центров образующиеся антитела имеют разную специфичность и разный аффинитет.

Один клон плазматических клеток, являющихся потомством В-лимфоцитов, продуцирует антитела одной специфичности.

То есть работает закономерность один клон — один тип антител.

Специфичность — направленность против конкретного эпитопа какого-либо антигена.

Аффинитет (аффинность) — прочность связи одного антигенсвязывающего центра с индивидуальным эпитопом антигена. Обусловлен степенью пространственного соответствия (пространственной комплементарности) активного центра антитела и антигенного эпитопа. Мерой аффинитета служит константа равновесия реакции их взаимодействия.

Авидность антител — суммарная сила взаимодействия антитела с антигеном. Антитела содержат от двух до десяти антигенсвязывающих центров. Поливалентность антител существенно усиливает прочность их соединения с антигеном, поскольку для диссоциации образующихся комплексов необходим разрыв сразу всех связей. Применительно к физиологическим условиям более адекватно рассматривать авидность, а не аффинность антител.

Полный набор возможных антител называют антительным репертуаром. По разным оценкам, он включает от 1011 до 1016 молекул антител разного строения.

В отдельных случаях одни антитела могут распознавать вариабельные участки других антител, составляющие их активные центры. Поскольку нет двух В-клеточных клонов, продуцирующих антитела одной и той же специфичности, то разные вариабельные участки активных центров являются, по существу, маркерами разных клонов В-лимфоцитов. Такие участки называют идиотипами (idios (греч.) — собственный, частный). Идиотип — вариант уникального антигенсвязывающего участка молекулы иммуноглобулина. В организме могут нарабатываться антитела против собственных идиотипов, поскольку каждый новый идиотип является антигеном, с которым иммунная система никогда ранее не встречалась. Антиидиотипические антитела, с одной стороны, взаимодействуют с идиотипом, с другой стороны, сами являются новым антигеном для иммунной системы и могут вызывать иммунный ответ на собственный активный центр. Это приводит к возможному появлению антител уже к их идиотипу. Таким образом, формируется антиидиотипическая сеть, несущая иммунорегуляторные функции. В настоящее время этот эффект используется в практической иммунобиотехнологии и лечении некоторых заболеваний. За создание теории антиидиотипической сети Н. Йерне в 1984 году был удостоен Нобелевской премии.

2.3. Биологические функции антител

1. Нейтрализация вирусов.

— Связываются с вирусами, предотвращая их проникновение в клетку и последующую репликацию.

— Вызывают агрегацию вирусов с последующим поглощением фагоцитирующими клетками.

— Взаимодействуют с клеточными рецепторами вирусов, ингибируя связывание вирусов с клеточной поверхностью.

— Блокируют межклеточное проникновение вирусов.

— Обладают ферментативными свойствами.

Антитела особенно эффективны в тех случаях, когда вирусу для достижения клеток-мишеней необходимо пройти через кровоток. Тогда эффективными могут быть даже относительно низкие концентрации антител в крови. Поэтому наиболее очевидный защитный эффект антител наблюдается при инфекциях с длительным инкубационным периодом, когда вирус, прежде чем достичь клеток-мишеней, должен пройти через кровоток, где может быть нейтрализован даже очень небольшим количеством специфических антител.

2. Нейтрализация токсинов.

Циркулирующие в крови продукты бактериального происхождения и другие экзотоксины (например, фосфолипаза пчелиного яда) связываются направленными против них антителами. Антитело, присоединившись вблизи активного центра токсина, может блокировать его взаимодействие с субстратом. Даже связываясь с токсином на некотором расстоянии от его активного центра, антитела могут подавить токсичность в результате аллостерических конформационных изменений. В комплексе с антителами токсин теряет способность к диффузии в тканях и может стать объектом фагоцитоза.

3. Опсонизация бактерий.

Опсонизация — связывание антител с антигенами поверхности бактерий. В результате опсонизации бактерии становятся объектом интенсивного поглощения фагоцитирующими клетками. Действие антител усиливается белками системы комплемента, которые также связываются с бактериальной поверхностью. (Белки системы комплемента могут и самостоятельно опсонизировать бактерии.) На фагоцитирующих клетках имеются рецепторы для Fc-участков иммуноглобулинов и рецепторы для белков комплемента.

4. Активация системы комплемента.

Связываясь с поверхностью клеток, антитела классов IgM и IgG приобретают способность инициировать классический путь активации комплемента. Активация приводит к отложению белков системы комплемента на поверхности бактериальных клеток, образованию пор в мембране и гибели клеток с последующим привлечением к месту событий фагоцитов и поглощением клеток фагоцитами.

5. Антителозависимая клеточная цитотоксичность.

Антитела, связавшиеся с чужеродными антигенами на поверхности клеток, приобретают способность взаимодействовать с Fc-рецепторами на мембране цитотоксических клеток (естественные киллеры, цитотоксические Т-лимфоциты). Примерами мембранных чужеродных антигенов могут служить вирусные белки, появляющиеся на поверхности вирусинфицированных клеток. В результате взаимодействия антигена с антителом и Fc-рецептором образуется мостик, сближающий клетку-мишень и цитотоксическую клетку. После сближения цитотоксическая клетка убивает клетку-мишень.

6. Защита от паразитов.

Существуют паразиты, слишком крупные, чтобы их можно было уничтожить путем фагоцитоза, например гельминты. Выделяемые паразитом антигены могут взаимодействовать с IgE, связанными через соответствующий рецептор с тучными клетками. В результате такого взаимодействия тучные клетки выбрасывают медиаторы, привлекающие эозинофилы. Последние уничтожают или нейтрализуют гельминтов путем выброса во внеклеточное пространство специфических эффекторных молекул.

7. Иммунорегуляторная функция.

Антиидиотипические антитела взаимодействуют с активными центрами других антител (идиотипами) и осуществляют регуляцию гуморального иммунного ответа, подавляя их активность.

8. Проникновение через плаценту.

В эмбриональный период и первые несколько месяцев жизни, когда собственная иммунная система ребенка еще недостаточно развита, защиту от инфекций обеспечивают материнские антитела, проникающие через плаценту или поступающие с молозивом и всасывающиеся в кишечнике. Через плаценту в кровь плода поступают антитела класса IgG.

Основные классы иммуноглобулинов грудного молока — это IgG и секреторный IgA. Они не всасываются в кишечнике, а остаются в нем, защищая слизистые оболочки. Эти антитела направлены к бактериальным и вирусным антигенам, часто попадающим в кишечник.