Конспект лекций по Экологии Лекция 1

Вид материалаКонспект

Содержание


Радиационный фактор. его роль в формировании экологии и здоровья человека
1. Источники радиационного фона
2 - Земная радиация
3 - Внутреннее облучение
Технологически измененный естественный радиационный фон
Искусственный радиационный фон
Испытания ядерного оружия: масштабы и экологические последствия.
2 - Атомные электростанции
Аварии на радиационных объектах.
Чернобыльская катастрофа
3. Хранение и обезвреживание радиоактивных отходов.
Захоронение и обеззараживание РАО
Радиационная ситуация в рф
Подобный материал:
1   ...   9   10   11   12   13   14   15   16   ...   19

Лекция 6.

РАДИАЦИОННЫЙ ФАКТОР. ЕГО РОЛЬ В ФОРМИРОВАНИИ ЭКОЛОГИИ И ЗДОРОВЬЯ ЧЕЛОВЕКА

Радиация присутствовала в природе всегда, и живые организмы постоянно испытывали на себе действие определенного количества излучения, исходящего как из природных ис­точников (почва, пища), так и от космических лучей.

Различной длины радиоволны, свет и радиационное тепло от Солнца являются одной из разновидностей радиации, однако она не является ионизирующей, так как не способна разрывать химические связи моле­кул живых организмов, вызывая биологически важные изменения.

Сегодня атомные электростанции вырабатывают 18.4% всей электроэнергии, при этом в отдельных стра­нах 'эта доля значительно выше. Так, в ра шитых странах атомная энергия в электроснабжении занимает во Франции -75%, Бельгии—46,6%, Шве­ции - 46%, Японии – 36 и США- 19.7%. В России находится в эксплуатации 29 энерюблоков АЭС.

Эксплуатация объектов атомной энергетики связана с незначительным радиационным воздействием, однако возможные аварии (как известно, в 14 странах мира произошло более 150 аварий), а также испытатель­ные взрывы ядерного оружия в атмосфере, продолжавшиеся с 1954 по 1963 гг., загрязнили радиоактивными веществами значительную часть пла­неты, Беспрецедентная по сложности и масштабам последствий авария, происшедшая в апреле 1986г. на Чернобыльской ЛЭС, привела к радио­активному загрязнению части герриторнй 17 областей России, а радио­активные выпадения достигли Австрии, Германии, Италии, Норвегии, Швеции, Польши, Румынии, Финляндии.


1. ИСТОЧНИКИ РАДИАЦИОННОГО ФОНА


ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ ФОН

1 -Космические лучи

Космические лучи, в основном, приходят из глубины Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут являться источником первичною космическою излучения, достигая поверхности Земли или взаимодействуя с ее атмос­ферой, порождают вторичное излучение, приводя к образованию раз­личных радионуклидов.

Первичное галактическое излучение может изменять свою плотность потока в связи с флюктуацией магнитного ноля Земли и 11-летним цик­лом солнечной активности, которые вызывают отклонение излучения при переходе к поверхности Земли и, вследствие этого, ослабляют излуче­ние. Интенсивность первичного излучения может увеличиваться в 100 раз и более во время солнечных вспышек.

Частицы высоких энергий первичного космическою излучения, по­падая в атмосферу и взаимодействуя с ядрами атомов воздуха, образуют

вторичное космическое излучение: нейтроны, протоны.

На Северном и Южном полюсах наблюдаются более высокие уровни радиации по сравнению с экваториальной областью благодаря магнитному полю, отклоняющему заряженные частицы (из которых в основном и состоят космические лучи). Необходимо также подчеркнуть тот факт, что уровень облучения растет с высотой, поскольку при этом остается все меньше воздуха, играющего роль защитного экрана. Так, население, проживающее в Тегеране или Мехико, расположенных на высоте 4 км от уровня моря, получает годовые эффективные дозы, обу­словленные космическим излучением, в 2-3 раза большие, чем населе­ние, проживающее на уровне моря- Безусловно, на дозу облучения вли­яет и продолжительность времени воздействия. Так, при перелете из Нью-Йорка в Париж пассажир обычного турбореактивного самолета получает дозу около 50 мкЗв, а пассажир сверхзвукового самолета вследствие уменьшения времени полета - на 20% меньше, хотя подвергается более интенсивному облучению. Всего за счет использования воздушного

транспорта человечество получает в год эффективную коллективную дозу

2 - Земная радиация

Радионуклиды земного происхождения дают наибольший вклад в дозу облучения от естественных источников. К ним относятся 32 нуклида, входящие и состав радиоактивных семейств. Наиболее важное эколого-гигиеническое значение из радионуклидов, представляющих урановое и ториевое семейства, имеют. Эти радионуклиды распространены во всех объек­тах окружающей среды. В определенных количествах они всегда содер­жатся в теле человека.

Основной вклад в радиоактивность горных пород вносят радио­нуклиды семейства урана-радия (U) и торий (Th).

Естественная радиоактивность почв зависит, прежде всего, от радио­активности материнских пород, При этом наибольшей радиоактивностью обла­дают сероземы, наименьшей - торфяники.

Существенное значение как источник фонового облучения человека могут иметь поверхностные и подземные воды.

В поверхностных и подземных пресных водах определяется значи­тельное содержание К, однако оно меньше, чем в воде морей и океа­нов. Из подземных вод наибольшей радиоактивностью обладают воды, приуроченные к кислым магматическим породам, наименьшей к оса­дочным породам. Последние чаще используются для целей коммуналь­ного водоснабжения.

Интенсивное вымывание радионуклидов из толщи горных пород при­водит к образованию в некоторых районах радиоактивных вод.

Радиоактивность морской воды определяется, в основном, содержа­нием К, и в открытых морях н океанах достигает 13 Бк/л (1300 Бм3). Органическая часть илов открытых водоемов содержит большое ко­личество К, что обусловливает высокую радиоактивность по сравне­нию с почвами.

3 - Внутреннее облучение

Примерно 2/3 эффективной (эквивалентной) дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с воздухом, водой, пи­щей. При этом основная часть поступает от источников земного проис­хождения, и незначительная часть приходится на радиоактивные иэотопы типа С углерода и трития, которые образуются иод влиянием космичес­кой радиации.

В среднем человек получает около 180 микрозивертов в год за счет К, который усваивается организмом вместе с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда-U и в меньшей степени от радионук­лидов ряда "Th.

Основной вклад в радиоактивность расти­тельных и животных организмов вносит К,

Наиболее весомым из всех естественных источников радиации явля­ется невидимый, не имеющий вкуса и запаха газ - радон.

Радон

Большую часть этой дозы человек получает от ра­дионуклидов, попавших в организм с вдыхаемым воздухом.

Rh - это радиоактивный газ, в 7,5 раз тяжелее, чем воздух, образу­ющийся в цепочке радиоактивного распада U.

Основную часть дозы облучения от радона и продуктов его распада человек получает, находясь в закрытом, не проветриваемом помещении. В замкнутом помещении концентрация радона в среднем в 8 раз больше, чем в наружном воздухе. Радон поступает внутрь помещения и концентрируется в нем при просачивании через фундамент и пол из почвы или при высвобождении из строительных материалов (стены, по­толок). Высокое содержание радона наблюдается в зданиях, стоящих на грунте с большим содержанием радия. Серьезную опасность для человека представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым возду­хом, наиболее часто наблюдающиеся при нахождении в ванной комнате.


ТЕХНОЛОГИЧЕСКИ ИЗМЕНЕННЫЙ ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ ФОН

Техногенный фон постоянно возра­стает в связи с индустриализацией стран, в процессе которой в природ­ную среду стали поступать в больших количествах естественные радионуклиды, извлекаемые из глубин Земли вместе с углем, рудой, нефтью, газом, минеральными удобрениями, термальными водами и др.

1. Главными источниками техногенного фона являются строительные материалы, к которым добавляются отходы добычи различных руд или угольная зола, сам угольный топливный цикл, а также добыча и приме­нение а сельском хозяйстве удобрений для почв.

2. Одним из материалов, использование которого приводит к увеличе­нию естественного фона излучения, является уголь. При добыче, сжигании угля, использовании угольной золы для строительных материалов происходит перераспределение радионуклидов из земных глубин в биосферу, что обусловливает увеличение облучения населения.

В некоторых странах более 1/3 образующейся золы используется в качестве добавки к цементам, асфальтам и бетонам. Последний иногда на 50% состоит из зольной пыли. Использование золы в качестве добавки к строительным материалам, а также при внесении ее в больших количе­ствах в почву приводят к увеличению радиационного фона.

На отопление жилых домов и приготовление пищи расходуется мень­ше угля, чем на ТЭС, но зато вследствие несовершенства технологии больше зольной ныли летит в атмосферу в пересчете на единицу топлива, вследствие чего ожидаемая эффективная коллективная доза облучения населения за счет отопления домов углем значительно больше, чем в результате эксплуатации ТЭС.

Использование нефти на электростанциях также ведет к концентрированию радионуклидов U, Th, K. Еще меньшую радиационную опасность представляют производство и использование природного газа.

Добыча и использование фосфатных руд также обусловливает увели­чение технологически повышенного естественного радиационного фона.


ИСКУССТВЕННЫЙ РАДИАЦИОННЫЙ ФОН

1 - Ядерное оружие

Периодами наиболее интенсивных испытаний этого оружия были 1954-195Я гг. (США, Великобритания, СССР) и 1961-1962 rr, (СССР, США), когда было взорвано оружие об­щей мощностью 513 Меготротилового эквивалента. После 1963 г. испыта­ния в атмосфере и под водой в СССР и США были прекращены, несколь­ко серий испытаний в атмосфере до 1981 г. были проведены Францией и Китаем. Подземные испытания ядерного оружия проводятся по сей день, но они, как правило, происходят в условиях, исключающих радиоактив­ные осадки и загрязнение окружающей среды.

К середине 80-х п. прошлого века — пику гонки ядерных воору­жений — две сверхдержавы — СССР и США накопили гигантские арсеналы атомного и термоядерного оружия: около 18 млрд. т в тротиловом эквиваленте (A.M. Рябчиков, 1987 г.), что составляло более 3 т на каждого жителя планеты. В разгар самого острого противостояния число ядерных боеголовок достигло 56400, причем мощность каж­дой из них была в среднем в 25 раз больше бомбы, взорванной над Хиросимой (около 13 кт). С учетом количества ядерного оружия еще трех держав (Франции, Англии и Китая) общая численность боего­ловок составляла около 60 тыс.

Взрывная мощность накопленного ядерного оружия, по подсче­там специалистов, более чем в 1000 раз превышала взрывную мощ­ность всех боеприпасов, использованных во время второй мировой войны (около 7 млн т), а также боевых действий в Корее и Вьетнаме (более 10 млн т) вместе взятых. В ходе указанных войн, как извес­тно, погибло 44 млн человек. Ныне признается, что три страны (США, Россия и Китай) обладают возможностью многократного вза­имного гарантированного уничтожения.

Испытания ядерного оружия: масштабы и экологические последствия.

Из материалов ООН известно, что с 1945 по конец 19S7 г. на нашей планете было проведено 1741 ядерное испытание, из них 899 взрывов осуществили США (по другим данным — 919), 620 — СССР, 151 — Франция, 41 — Англия и 30 — КНР. К 1989 г. было проведено уже 1880 взрывов. При этом суммарная мощность ядерных взрывов, произведенных только в США, равнялась 11050 атомным бомбам, сбро­шенным на Хиросиму (В.В. Довгуша и др., 1995 г.). СССР в 1962 г. испытал на полигоне Новая Земля сверхмощную бомбу в 52 мегатон­ны. Напомним, общее количество взрывчатки, использованное в годы второй мировой войны, составило около 7 мегатонн.

В течение почти 40 лет ядерных испытаний на Земле происходи­ло накопление радионуклидов. В биосферу было выброшено 12,5 т продуктов деления (при взрыве атомной бомбы над Хиросимой выде­лилось около 1 кг продуктов деления). Взрывы изменили равновес­ное содержание в атмосфере углерода |4С (с периодом полураспада 5730 лет) на 2,6%, а радиоактивного изотопа трития (с периодом полураспада 12,3 года) — почти в 100 раз.

Радиоактивное излучение на поверхности Земли достигло к 1963 г 2% сверх естественного фона.

2 - Атомные электростанции

В РФ насчитывается 29 энергоблоков. В центральной России (Центральный и Центрально-Черноземный эко­номические районы) в настоящее время присутствуют четыре атомные электростанции. Общая мощность их ядерных энергетических установок составляет около 11 мВт.

Следует отметить, что перед электростанциями на иных видах топлива АЭС имеют ряд экологических преимуществ. Они сохраняют для населения жизненные пространства, тогда как вокруг угольных электростанций сепии гектаров занимают золоотвалы вредной угольной пыли; для эксплуата­ции гидроэлектростанций затопляют под водохранилища плодородные пойменные луга, а использование ветряных источников электроэнергии, сопровождаемое интенсивными акустическими колебаниями, распуги­вает на километры вокруг себя все живое.

Установлено, что влияние АЭС на радиоактивное загрязнение почв и фунтов незначительно и несопоставимо с ее естественным уровнем радиоактивности Показано, что золоотвалы угольных станций создают ради­ационный фон в 5-40 раз выше, чем выбросы АЭС.

В то же время, необходимо учитывать, что тепловые выбросы АЭС в 1,5 раза больше, чем на ТЭС, и это часто приводит к ухудшению эколо­гической ситуации как в водоемах-охладителях, так и в близлежащих естественных водоемах и грунтовых водах.

В выбросах АЭС в атмосферу присутствуюттакие радионуклиды, как радиоактивные благородные газы (ксенон, криптон),

Аварии на радиационных объектах.

Какой бы совершенной ни была современная боевая техника, какие бы системы контроля и подстра­ховки не устанавливались, аварии и катастрофы невозможно исклю­чить. Согласно источникам, за последние 40 лет произошло не менее 130 серьезных аварий только американских бомбардировщиков и ра­кет, при которых была вероятность ядерного или даже термоядерного взрыва. В результа­те аварий и катастроф на советских и российских АПЛ с 1968 по 2000 г. в Мировом океане оказалось 7 энергетических ядерных установок. Всего же, по данным американского журнала «Тайме», на дне Мирового океана находится 7 затонувших АПЛ различной нацио­нальной принадлежности, 10 атомных реакторов и 50 ядерных (атом­ных и водородных) боеприпасов.

Согласно японским исследованиям, в результате коррозии в мор­ской воде уже «потекла» водородная бомба, которую американцы потеряли в Тихом океане. Выявлена повышенная радиоактивность и в районе, где лежат на дне погибшие АПЛ США «Трешер» и «Скор­пион».

Чтобы подчеркнуть важность мероприятий, направленных на предотв­ращение аварий на радиационно-опасных объектах, академик В. Котлов (1997 г.) указывает, что в РФ насчитывается таковых 34 тысячи. Из них 29 атомных энергоблоков, 113 научно-исследовательских реакторов, крити­ческих и подкритических сборок с ядерными материалами, 245 АПЛ, из которых большая часть выведена из эксплуатации, 12 атомных надводных судов, тысячи тонн отработанного ядерного топлива, 3 млрд кюри вре­менно захороненных РАО.

Чернобыльская катастрофа: трагический опыт и предупреждение. Серьезным предостережением человечеству явилась катастрофа, слу­чившаяся на Чернобыльской АЭС 26 апреля 1986 г. и нанесшая не­поправимый ущерб как множеству людей, так и развитию отечествен­ной атомной энергетики.

Во время плановых исследований реактор четвертого энергоблока, загруженный 180 т радиоактивного топлива, потерял управление, что привело к взрыву и выбросу в атмосферу около 50 т топлива. Оно испарилось и образовало огромный атмосферный резервуар долгоживущих радионуклидов. Еще около 70 т топлива было выброшено за пределы реактора с периферийных участков активной зоны боковыми лучами взрыва. Помимо топлива взрывом было выброшено и около 700 т радиоактивного реакторного графита. Примерно 50 т ядер­ного топлива и 800 т графита остались в разрушенном реакторе. Вслед­ствие большой температуры в нем графит в последующие дни выгорел и тем самым способствовал увеличению количества радиоактивных осад­ков. Отметим для сравнения, что общая масса радиоактивных веществ, которые образовались в результате взрыва бомбы над Хиросимой, со­ставила лишь 4,5 т. При этом долгоживущих и поэтому особо опасных радионуклидов поступило в биосферу в 600 раз больше, нежели после ядерного взрыва 1945 г.

Согласно имеющимся данным, последствия катастрофы оказа­лись крайне тяжелыми. Во время самой аварии погибли 2 человека, 29 умерли позже от острого лучевого поражения, около 150 тыс. человек эвакуированы из 30 километровой зоны, которая прилегает к АЭС. В этой зоне запрещены проживание людей и ведение хозяй­ственной деятельности.

Выброшенное из реактора топливо в виде мелкодисперсных час­тиц диоксида урана, высокоактивных радионуклидов Йода-131, плутония-239, нептуния-139, цезия-Ш, стронция-90 и других радио­активных изотопов, вызвало зафязнение многих регионов. При этом наиболее сильно пострадали районы Гомельской, Могилевской, Брян­ской, Киевской и Житомирской областей.

Ученые считают, что последствия катастрофы, прежде всего в отношении здоровья людей, в наибольшей степени проявят себя че­рез 10 лет после взрыва, т.е. в конце XX века. Следы ее в генном аппарате человека исчезнут не ранее чем через сорок поколений, т.е. почти через 1000 лет. Сейчас прогнозы уточняются.

Огромную опасность для здоровья человека представляет избира­тельное накопление радионуклидов в различных частях тела. Так, стронций-90, который легко аккумулируется в травах, переходит в организм, например, коровы, а далее с ее молоком попадает в орга­низм человека. В случае его накопления в костном мозге развивают­ся лейкоз или опухоль кости. Цезий-137, будучи менее раствори­мым, попадает в организм вместе с растительной пищей и аккумули­руется в печени или в половых железах. Последнее обстоятельство может привести к возникновению наследственных изменений.

3. Хранение и обезвреживание радиоактивных отходов.

Количество и объемы средне- и низкоактивных РАО чрезвычайно велики. Предполагается., что к 2000 г, в России их накопится около 1,5млн м3, в США — около 3,6 млн м3.

Почти 98,5% ядерного топлива АЭС идет в отходы, представляю­щие собой радиоактивные продукты расщепления (плутоний, цезий, стронций и т.д.), которые нельзя уничтожить, а можно лишь вечно хранить на спецскладах.

Еше более опасные последствия имеют место в случаях катастроф и аварий на атомных объектах и предприятиях.

Крупная авария произошла в 1957 г. в Челябинской области на ра­диохимическом заводе по переработке ядерного топлива и извлечения плутония для ядерных бомб. Этот завод с 1949 г. сбрасывал РАО в от­крытые водоемы, в частности, в озеро Карагай поступило 120 млн кюри (1Ки=3,7-10шБк), что в два раза больше, чем в результате катастрофы в Чернобыле.

В дальнейшем для жидких РАО были изготовлены бетонные емкости с покрытием из нержавеющей стали. Однако именно в них про­изошел взрыв с выбросом 2 млн кюри. Облако прошло на север, оставив радиоактивный след длиной 105 км и шириной до 8 км. Из зараженной зоны переселили 17 тыс. жителей. Ликвидация следа производится до сих пор.

В системе МО РФ очень острой стала проблема нейтрализации РАО, которые образуются в процессе эксплуатации и ремонта, а так­же вследствие вывода из боевого состава атомных подводных лодок (АПЛ) 1 и 2-го поколений. Уже сейчас на Северном флоте, напри­мер, скопилось около 90 АПЛ с выслужившими свой срок реактора­ми. Всего же в пяти ядерных флотах мира (США, Россия, Китай, Англия и Франция) в 1990—1995 гг. предполагалось списать 190 реак­торов. При плановом сроке отстоя активных зон реакторов до 5—6 лет некоторые установки находятся в этом режиме от 7 до 14 лет. При этом специалисты отмечают, что ВМФ не хватает хранилищ для РАО, а имеющиеся находятся далеко не в лучшем состоянии.

Захоронение и обеззараживание РАО:

Свалки РАО в морях, в том числе и российских, возникли вслед за появлением атомного флота у ряда стран. Сбросы РАО, начавшиеся уже в 1959 г., продолжались систематически вплоть до 1992 г. в некоторых районах Балтийского, Баренцева, Белого, Карского, Охотского и Японско­го морей, а также в прибрежных водах архипелага Новая Земля и полуострова Камчатка.

По сводным данным (В.В. Догуша, 1995 г.), в период с 1964 по 1991 г. в северных морях затоплено 4900 контейнеров с твердыми РАО низкой и средней степени активности. У восточных берегов России, в Японском и Охотском морях за 1986—2000 г. было захоронено 6868 контейнеров со средне- и низкоактивными твердыми РАО, а также 38 судов и более 100 крупногабаритных обьектов. Их суммарная активность оценивается спе­циалистами в 22,2 тыс. кюри. За 30 лет эксплуатации атомного флота в экосистемы северных морей поступило около 100 тыс. м3 жидких РАО с активностью более 24 тыс. кюри.

Общее количество РАО, сброшенных в море США только в 1946— 1970 гг. составило более 86 тыс. контейнеров с суммарной радиоак­тивностью около 95 тыс. кюри. В 1971 — 1983 г.г. РАО предприятий военной и мирной атомной промышленности регулярно сбрасывали в морс Бельгия, Англия, Нидерланды и Швейцария, эпизодически — Франция, Италия, ФРГ, Швеция, Япония, Южная Корея. Под­считано, что всего за 1967—1992 г. в Атлантическом океане оказалось 94603 т РАО, размещенных в 188188 контейнерах, обшей активностью более I млн кюри.

К настоящему времени выработаны (К.М. Сытник и др.) следу­ющие технологии захоронения РАО;

1) для больших количеств высо­коактивных РАО — концентрирование и последующее хранение (по-средством остекловьщания, бетонирования и складирования в глубо­ких шахтах); 2) для небольших количеств высокоактивных РАО — извлечение долгоживущих изотопов с высокой токсичностью (ядови­тостью) перед удалением остаточной активности;

3) для отходов сред­ней степени активности — хранение до достижения распада коротко-живущих изотопов и последующее рассеивание в той или иной среде:

4) для относительно небольших количеств слабоактивных отходов — разбавление (например, водой) и последующее рассеивание.

1. Захоронение в изолированном виде (в капсулах). Технология состоит в переводе РАО в стекловидное состояние (путем заливания жидким стеклом), смешении с цементом или в заключении остеклованной массы в коррозионностойкие контейнеры, которые способ­ны выдержать большое внешнее давление. После этого их сбрасыва­ют на большие глубины. Англичане замуровывают отходы в бочки и сбрасывают в море. В Рос­сии для захоронения, как правило, используют так называемые водные линзы. В них закачивают в жидком виде не только радиоактивный строн­ций и цезий, но и плутоний-239, период полураспада которого состав­ляет 24 тыс. лет. Если за эти тысячелетия герметичность линзы нарушит­ся, последствия будут катастрофическими.

  1. Захоронение малоактивных РАО в предварительно разбавлен­ ном виде. Для тою, чтобы радиоактивность отходов, попавши в морскую среду, быстро убывала, сброс их рекомендовано осуществ­лять во время движения судна и желательно под винт. Ныне законо­дательство России запрещает подобное захоронение.

3. Длительное хранение высокоактивных РАО. Хранение высокоак­тивных жидких отходов (обычно это водные азотнокислые растворы) осуществляется в баках из нержавеющей стали с двойным дном, объ­емом от нескольких десятков до нескольких сотен кубометров. Уста­навливают их в бетонных камерах, а для того, чтобы предотвратить возможный взрыв скапливающегося водорода, резервуар непрерыв­но продувают воздухом. Отработанный воздух в дальнейшем очища­ют от радиоактивных аэрозолей в специальных фильтрах.

Содержимое некоторых баков постоянно перемешивают, так как выпадение твердых частиц, например плутония или урана, может привести к накоплению критической массы и, следовательно, ини­циировать ядерный взрыв. Выпадение же в осадок радиоактивных солей другой природы может способствовать резкому повышению тем­пературы и также породить взрыв, но уже тепловой, с выходом ра­диоактивности в окружающую среду.

Современное хранилище высокорадиоактивных отходов состоит из вертикальных шахт, горизонтальных штреков (коридоров) и соб­ственно помещений для захоронений, сооружаемых, например, в соляных породах на глубине порядка 600 м. В полу помещения бу­рятся шурфы для хранения канистр с растворами отходов высокой удельной активности (ОВУА). Между шурфами необходимо выдер­живать расстояние от 10 до 50 м. Причиной такого разнесения ка­нистр друг от друга является их сильное тепловыделение; нарушение режима последнего может привести к катастрофе.

4. На Западе (США, Франция) прорабатывалось несколько проек­тов долговременных хранилищ ОВУА, включая и довольно экзоти­ческие. Один из них связан с запуском тяжелых ракет, загруженных высокоактивными отходами, в сторону Солнца, с последующим их уничтожением. Однако следует помнить, что, согласно статистике, до 2% запусков ракет заканчиваются их авариями в пределах атмосфе­ры. Подобная катастрофа, естественно, обернется тяжелейшими последствиями, соизмеримыми с чернобыльской. В США ведутся длительная дискуссия и поиск мест для размещения двух грандиозных хранилищ для РАО на период до 10 тыс. лет. Они будут размешаться на глубине 300 — 1000 м в местах, не подверженных землетрясени­ям. Стоимость указанного проекта оценивается в 27 млрд дол.

На территории России суммарная активность незахороненных радио­активных отходов, по некоторым оценкам, превышает 4 млрд Ки. В Рос­сии есть 15 полигонов для захоронения, центры по утилизации отходов (Чслябинск-65, Красиоярск-26).

Аварии с выбросом радиоактивных веществ, которые имели место на ПО «Маяк» на севере Челябинской области, привели к образованию под озером Карагай «линзы» из радиоактивных рассолов, которая движется в направлении реки Теча со скоростью 80 м в год. Если эти соли попа­дут в водные объекты, то может быть загрязнена значительная террито­рия Западной Сибири и затем Ледовитый океан. Подобная ситуация сло­жилась и в бассейне Оби в Томской области в результате деятельности Сибирского химического комбината.

В Карском море были затоплены ра­диоактивные отходы с умеренной радиоактивностью почти 2,5 МКи, что позволило считать Карское море потенциально опасным районом Миро­вого океана. Опубликованные данные послужили толчком для более де­тальных исследований.

Согласно российскому законодательству, отходы, образующиеся в Процессе переработки иностранного отработанного ядерного топлива, Должны быть отправлены обратно — в ту страну, из которой они посту­пили. Эчхэ является мощным сдерживающим факторов для любой страны, желающей избавиться от этого вида высокоактивных отходов, а также для коммерческой деятельности.

РАДИАЦИОННАЯ СИТУАЦИЯ В РФ

Радиоактивное загрязнение приземного слоя атмосферы

За пределами загрязненных в результате Чернобыльской аварии территорий средние концентрации в воздухе таких радионуклидов, как цезий-137 и стронций-90, составляли соответственно 6,0410-7

Содержание радионуклидов в атмосферных выпадениях на загрязненных территориях Европейской части России также существенно превышало среднее по стране в 10 раз.

В районах, расположенных в зоне влияния ПО "Маяк" на Южном Урале, выпадения цезия-137 из атмосферы в течение 1994 г. были в 50-100 раз больше, чем в среднем по стране.

Радиоактивное загрязнение местности

1. В Европейской части России - это территории, загрязненные в результате аварии на Чернобыльской АЭС, где основным радионуклидом является цезий-137.

2. На Южном Урале - это районы, примыкающие к ПО "Маяк", и Восточно-Уральский радиоактивный след, образовавшийся в результате аварии на этом предприятии в 1957 г. и вследствие ветрового разноса радиоактивных аэрозолей пересохшего технологического водоема №9 ПО "Маяк" (оз. Карачай) в 1967 г.

3. На территории, попавшей под радиоактивные выпадения в результате аварии на Сибирском химическом комбинате (СХК).