А. В. Турчин Ответственные редакторы

Вид материалаРеферат

Содержание


2.9. Технологические риски, связанные с принципиально новыми открытиями. 2.9.1. Неудачный физический эксперимент.
Подобный материал:
1   ...   49   50   51   52   53   54   55   56   ...   110

2.9. Технологические риски, связанные с принципиально новыми открытиями.

2.9.1. Неудачный физический эксперимент.


Наиболее опасным является тот вариант, при котором значительное открытие совершится совершенно внезапно.

Высказывались опасения, что опыты по созданию микроскопических чёрных дыр на ускорителях, конденсации нейтронов и другие высокоэнергетичные эксперименты могут привести или к коллапсу земного вещества или к колоссальному взрыву, который мгновенно истребит жизнь на земле. Основной парадокс здесь в том, что безопасность любых экспериментов обосновывается тем, что мы знаем, что получится в результате, а цель эксперимента – в том, чтобы узнать что-то новое. Иначе говоря, если мы ничего нового не узнаем, то какой смысл ставить физические эксперименты, а если мы можем узнать что-то новое, то это может быть опасно. Может быть, молчание вселенной объясняется тем, что все цивилизации рано или поздно осуществляют некий эксперимент по «извлечению энергии из вакуума», а в результате от планеты остаются одни головешки. Другая точка зрения состоит в том, что раз похожие явления бывают в природе, например, при бомбардировке космическими лучами атмосферы, то безопасно их повторять. Однако можно сказать, что, повышая уровень энергий, мы рано или поздно можем дойти до некой опасной черты, если она есть.

Опасность экспериментов прямо связана с возможностью наличия неизвестных нам фундаментальных физических законов. Вопрос этот трудно решить вероятностным образом. В 20 веке уже было несколько открытий фундаментальных законов, и некоторые привели к созданию новых опасных видов оружия – хотя к концу 19 века картина мира казалась завершённой. Назову только открытия радиоактивности, квантовой механики, теории относительности, а в последнее время – тёмной материи и тёмной энергии.

Кроме того, есть ряд экспериментальных данных и теорий, которые носят разной степени характер непроверенности – но многие из них предполагают физические эффекты, которые могут быть опасны. Например, иногда мелькают сообщения о трансмутации химических элементов без радиоактивности – но разве это не способ наработать плутоний для атомной бомбы? Или, если такая трансмутация возможна, то не приведёт ли она к цепной реакции трансмутации по всей Земле?

Считается, что современные эксперименты на ускорителях не дотягивают на многие порядки до энергий, которые возникают в результате естественных столкновений космических лучей, происходящих в атмосфере Земли. Однако в книге Джона Лесли приводится оценка, что если энергия ускорителей будет расти с нынешней скоростью, то опасные уровни энергии будут достигнуты к 2100 году. Он показывает, что в течение всего ХХ века каждые 10 лет энергия, достигаемая на ускорителях, возрастала в 10 раз. И хотя сейчас обычные ускорители подошли к своему физическому пределу по размерам, есть принципиально другой способ достигать тех же энергий на установках размером с рабочий стол – речь идёт о разгоне частиц в ударной волне импульсного лазера. В тоже время программа СОИ предполагала создание импульсных лазеров колоссальной силы, запитывавшихся от ядерных взрывов.

Дж. Лесли, будучи профессиональным астрофизиком, даёт подробный анализ различных теоретически возможных опасных экспериментов. Это:
  1. Переход вакуума в новое метастабильное состояние. Есть гипотеза о том, что вакуум, будучи нулевым энергетическим уровнем всех физических полей, не является окончательным возможным таким уровнем. Точно так же уровень воды горного озера не является настоящим уровнем моря, хотя вода в озере может быть широкой и гладкой. И достаточно сильный всплеск волн в таком озере может привести к разрушению окружающих озеро барьеров, что приведёт к излиянию вод озера на уровень моря. Точно также, возможно, что достаточно высокоэнергетичный физический эксперимент может создать область вакуума с новыми свойствами, которая начнёт неограниченно расширяться.
  2. Образование объектов, состоящих из гипотетической кварковой материи, способной присоединять к себе атомы обычного вещества. Поскольку в её образовании играют важную роль так называемые «странные кварки», то могущая получиться в результате устойчивая материя называется ‘странной материи’, а её частицы – stranglets. Разработана идея установки, которая способна порождать и накапливать кусочки этой материи, а также использовать падение обычной материи на неё для получения энергии. К сожалению, авторы идеи ничего не говорят о том, что будет, если сгусток странной материи покинет ловушку и начнёт неограниченно поглощать вещество Земли.
  3. Искусственный Большой взрыв. Российский учёный А.Линде разработал теорию космологической инфляции, из которой следует, что начальная масса Вселенной составляла только 10-5 степени грамм, а вся остальная видимая масса образовалась в процессе расширения за счёт отрицательной энергии гравитации. Хотя мы не можем пока достичь необходимого уровня плотности энергии в наших лабораториях, чтобы повторно запустить этот процесс, сам требуемый уровень энергии невелик.
  4. Опыты по изменению гравитации. Есть сообщения об опытах Подклетнова об изменении гравитации – но не могут ли такие опыты дестабилизировать столб вещества земной коры под установкой и вызвать землетрясение?
  5. Конденсация холодных нейтронов в динейтроны и более крупные образования. Гипотетически может вызвать цепную реакцию конденсации всего земного вещества.
  6. Опасные геофизические эксперименты с глубоким бурением или проникновением сквозь кору, чреватые образованием сверхвулкана и дегазацией глубинных слоёв земли.
  7. Научное сообщество детально обсуждает риски образования микроскопических чёрных дыр, которые должны возникать при столкновении частиц на последних моделях ускорителей в ближайшем будущем. Образование микроскопической чёрной дыры, даже если она будет устойчива, не должно привести к немедленному засасыванию в неё всего вещества Земли, так как размеры её будут около размеров атома, а вокруг неё будет микроскопический аккреционный диск, который будет дозировать поступление вещества. Но такая микро-чёрная дыра неизбежно упадёт в сторону центра земли, проскочит его и начнёт совершать колебательные движения. Если её масса будет достаточно велика, она может образовать тонкий канал, по которому сжатое вещество земных недр начнёт поступать на поверхность – а опыт разрушения плотин говорит, что достаточно даже тончайшего канала, чтобы он постепенно расширился. Неверно полагать, что С.Хокинг «доказал», что чёрные дыры испаряются. Хокинг предложил интересную теорию, никаких экспериментальных свидетельств в пользу которой нет. Есть альтернативные теории, с многомерным пространством, где микроскопические чёрные дыры имеют больший горизонт и не испаряются. Многие важные физические открытие были сделаны случайно, там, где их никто не искал, например, радиоактивность. Микро-чёрные дыры, которые могли бы образовываться при столкновении космических лучей с атмосферой, отличаются от дыр, которые будут создаваться в ускорителе, тем, что будут иметь ненулевой момент движения, и с большой скоростью улетать в пространство, не задерживаясь внутри планеты. Наоборот, дыры, возникающие в ускорителе, будут иметь момент, близкий к нулю за счёт взаимной нейтрализации моментов пучков и будут иметь гораздо большие шансы остаться в Земле.

8) Возникновение магнитного монополя на большом адроном колайдере в Церне. Магнитный монополь может ускорять распад протонов, приводя к огромному выделению энергии, однако в отчёте ЦЕРН по безопасности предполагается, что даже если такой монополь возникнет, он быстро покинет Землю. (Отчёт церн о коллайдере и проблемах его безопасности. STUDY OF POTENTIALLY DANGEROUS EVENTS DURING HEAVY-ION COLLISIONS AT THE LHC:REPORT OF THE LHC SAFETY STUDY GROUP ch/yellowrep/2003/2003-001/p1.pdf)

Погодовая вероятность опасного физического эксперимента растёт с течением времени, так как всё более высокоэнергетичные установки вводятся в строй и изобретаются новые способы достижения высоких энергий, а также применения их к объектам, к которым они обычно не применяются в природе. Кроме того, растёт разнообразие возможных физических экспериментов, которые могут привести к глобальной катастрофе.

Интересный вариант нового глобального риска предложен в статье (The Late Time Behavior of False Vacuum Decay: Possible Implications for Cosmology and Metastable Inflating States ссылка скрыта русский пересказ: «Астрономы разрушат Вселенную» ссылка скрыта ) В ней говорится, что скорость распада квантовых систем зависит оттого, наблюдаются они или нет (проверенный факт), а затем это обобщается на проблему наблюдения устойчивости вселенной как целого в связи с проблемой так называемой тёмной энергии. «Измерив плотность тёмной энергии, мы вернули её в начальное состояние, по сути, сбросив отсчёт времени. А в этом начальном состоянии вакуум распадается в соответствии с «быстрым» законом, и до критического перехода к «медленному» распаду ещё очень далеко. Короче говоря, мы, возможно, лишили Вселенную шансов на выживание, сделав более вероятным её скорый распад».

Выводы: поскольку всегда в экспериментах имеет место доля риска, имело бы смысл отложить их до того момента создания развитого ИИ. Часть экспериментов имеет смысл делать не на Земле, а далеко в космосе.