Достижения науки и техники, обусловленные ускорением научно-технического прогресса, способствуют совершенствованию всех отраслей промышленности и транспорта
Вид материала | Документы |
- 3 Новая экономическая политика, 27.2kb.
- Закономерности научно-технического прогресса, 36.44kb.
- О функционирования и совершенствования производственных процессов, научно-организационные, 92.04kb.
- Философские проблемы науки и техники, 294.53kb.
- Интернет – публикация, 512.77kb.
- Роль и место интеграции в развитии творческих способностей младших школьников, 74.25kb.
- Научно-техническая конференция предприятий радиоэлектронного комплекса, 184.06kb.
- А. В. Ефимов 2011 г, 160.04kb.
- Но универсальных методов лечения, направленных на запуск компенсаторных механизмов,, 108.65kb.
- Выступление на августовской конференции по проблеме «Наша новая школа»- национальная, 53.38kb.
Заключение
Достижения науки и техники, обусловленные ускорением научно-технического прогресса, способствуют совершенствованию всех отраслей промышленности и транспорта. В первую очередь, это относится к электрическим машинам, составляющим основу электроэнергетики, как в процессе производства электроэнергии, так и в процессе ее потребления.
Совершенствование электрических машин ведется по двум направлениям.
Во-первых, совершенствование технологии изготовления электрических машин, с целью увеличения их производства и снижения стоимости.
Во-вторых, применение в электрических машинах более качественных магнитных и электроизоляционных материалов, с целью повышения технико-экономических показателей электрических машин. И, наконец, в-третьих, создание новых видов электрических машин нетрадиционной конструкции, с использованием новейших достижений науки.
Работы последних лет показали, что резервы по усовершенствованию электрических машин традиционной конструкции во многом исчерпаны. Поэтому оказывается целесообразным переход к электрическим машинам нового принципа исполнения. В этом смысле особый интерес представляют криогенные и магнитогидродинамические электрические машины.
Криогенные электрические машины. В криогенных электрических машинах обмотки выполняют из сверхпроводников или химически чистых металлов (гиперпроводников). При снижении температуры удельное электрическое сопротивление сверхпроводников вначале плавно снижается, а затем при температуре критического перехода Θкр = 20 К (ниже -253 °С) резко падает до нуля: ρ* = 0 (ρ = 0), т. е. они переходят в состояние сверхпроводимости (рис. 3.1, кривая 1). У обычных металлов и сплавов нет состояния сверхпроводимости, и при снижении температуры их удельное электрическое сопротивление плавно уменьшается, достигая значения
ρ* = 10-1 при температуре абсолютного нуля (кривая 2).
У химически чистых металлов (гиперпроводников) также нет состояния сверхпроводимости, но при глубоком охлаждении их удельное электрическое сопротивление уменьшается до значения, в 5—7 тыс. раз меньшего, чем при комнатной температуре (кривая 3).
Рис.3.1. Зависимость электрического сопротивления проводников от температуры:
1 — сверхпроводники; 2 -обычные металлы; 3 — химически чистые металлы
Это свойство сверхпроводников и чистых металлов позволяет по проводам небольшого сечения пропускать значительные токи, доводя плотность тока до 100 А/мм2 и более. Электрические потери на нагрев обмоток при этом либо отсутствуют, либо незначительны. Все это дает возможность получать в криогенных машинах сильные магнитные поля с магнитной индукцией В = 5 ÷ 10 Тл (в машинах традиционного выполнения В = 0,8 ÷ 1,5 Тл).
Криогенная машина не содержит ферромагнитного сердечника, который, обладая свойством магнитного насыщения, не позволил бы получить столь высокие значения магнитной индукции, так как вызвал бы в машине значительные магнитные потери. Снижение потерь (электрических и магнитных) позволяет повысить КПД машин и более эффективно использовать их габариты, создавая машины весьма большой единичной мощности.
Необходимым элементом криогенной машины является криостат, представляющий собой теплоизолированную от внешней среды емкость, заполненную хладагентом (например, жидким гелием). Внутри криостата располагают охлаждаемую обмотку или же электрическую машину целиком.
Рассмотрим конструктивную схему криогенного турбогенератора со сверхпроводящими обмотками статора 4 и ротора 3 (рис. 3.2). Вся машина помещена в криостат, заполненный жидким гелием при температуре 10 К (-263 °С). На валу 2 расположено четыре металлических «полюса» 5, на каждом из которых укреплена говитковая полюсная катушка 3 из
Рис. 3.2. Конструктивная схема криогенного турбогенератоРа
со сверхпроводящими обмотками на статоре и роторе
сверхпроводника. Статор заключен в магнитный экран 7 из сверхпроводящего сплава. Поверхность экрана имеет множество отверстий, через которые внутрь машины проникает жидкий гелий. «Полюсы» ротора 5 и «сердечник» статора б, а также другие элементы конструкции машины не обладают ферромагнитными свойствами, а используются лишь для надежного закрепления обмоток.
Вся машина заключена в металлический кожух 8, образующий стенки криостата. Затем следует толстый слой теплоизоляции 9. Выделяющаяся за счет потерь теплота, а также теплота, проникающая в криостат из внешней среды, отбирается жидким гелием. Криогенная машина снабжена рефрижератором 10, подающим в криостат охлажденный гелий взамен испаряющегося. Контактные кольца 11 находятся в холодной зоне, а подшипники 1 и 12 вынесены за пределы криостата.
Рассмотренная конструкция криогенного генератора обладает существенным недостатком - значительные потери энергии в обмотке статора, вызванные переменным током в обмотке статора и переменным магнитным полем, наведанным этой обмоткой. Эти потери происходят главным образом из-за явления гистерезиса в сверхпроводящей обмотке. Пока еще не найдены эффективные способы ослабления этих потерь, вызывающих интенсивное испарение хладагента (жидкого гелия). Поэтому помимо электрических машин с криогированием обеих обмоток создаются и исследуются криогенные машины с криогированием только обмотки возбуждения. Эта обмотка питается постоянным током и защищена алюминиевым (демпфирующим) экраном от воздействия переменного магнитного поля обмотки статора, поэтому в ней не происходят явления, вызывающие магнитные потери. Обмотка статора в такой машине имеет обычную конструкцию, т. е. она вынесена за пределы криостата.
Исследования показали, что КПД криогенного синхронного турбогенератора с учетом всех дополнительных расходов энергии на собственные нужды (включая гелиевое охлаждение обмотки возбуждения) на 0,8% выше, чем у обычного синхронного генератора с водородным охлаждением мощностью 1200 тыс. кВт. При этом криогенный генератор имеет массу в четыре раза меньше.
В последнее время получены проводниковые материалы, обладающие сверхпроводимостью при температуре кипения жидкого азота (-196 °С) —хладагента более дешевого, чем жидкий гелий (температура кипения -268,9 °С). Ведутся работы по созданию проводниковых материалов с еще более высокой температурой сверхпроводимости. Применение этих материалов в криогенном электромашиностроении упростит конструкцию криостатов и снизит стоимость криогенных электрических машин.
Исследования показали, что в ближайшие 10—20 лет криогенное электромашиностроение станет одним из ведущих направлений при создании электрических машин особо большой мощности, выполнение которых по традиционным принципам технически невозможно.
*****многовитковая полюсная катушка 3 из сверхпроводника. Статор заключен в магнитный экран 7 из сверхпроводящего сплава. Поверхность экрана имеет множество отверстий, через которые внутрь машины проникает жидкий гелий. «Полюсы» ротора 5 и «сердечник» статора 6, а также другие элементы конструкции машины не обладают ферромагнитными свойствами, а используются лишь для надежного закрепления обмоток.
Вся машина заключена в металлический кожух 8, образующий стенки криостата. Затем следует толстый слой теплоизоляции 9. Выделяющаяся за счет потерь теплота, а также теплота, проникающая в криостат из внешней среды, отбирается жидким гелием. Криогенная машина снабжена рефрижератором 10, подающим в криостат охлажденный гелий взамен испаряющегося. Контактные кольца 11 находятся в холодной зоне, а подшипники 1 и 12 вынесены за пределы криостата.
Рассмотренная конструкция криогенного генератора обладает существенным недостатком - значительные потери энергии в обмотке статора, вызванные переменным током в обмотке статора и переменным магнитным полем, наведенным этой обмоткой. Эти потери происходят главным образом из-за явления гистерезиса в сверхпроводящей обмотке. Пока еще не найдены эффективные способы ослабления этих потерь, вызывающих интенсивное испарение хладагента (жидкого гелия). Поэтому помимо электрических машин с криогированием обеих обмоток создаются и исследуются криогенные машины с криогированием только обмотки возбуждения. Эта обмотка питается постоянным током и защищена алюминиевым (демпфирующим) экраном от воздействия переменного магнитного ноля обмотки статора, поэтому в ней не происходят явления, вызывающие магнитные потери. Обмотка статора в такой машине имеет обычную конструкцию, т. е. она вынесена за пределы криостата.
Исследования показали, что КПД криогенного синхронного турбогенератора с учетом всех дополнительных расходов энергии на собственные нужды (включая гелиевое охлаждение
обмотки возбуждения) на 0,8% выше, чем у обычного синхронного генератора с водородным охлаждением мощностью 1200 тыс. кВт. При этом криогенный генератор имеет массу в четыре раза меньше.
В последнее время получены проводниковые материалы, обладающие сверхпроводимостью при температуре кипения жидкого азота (-196°Г) —хладагента более дешевого, чем жидкий гелий (температура кипения -268,9 °С). Ведутся работы по созданию проводниковых материалов с еще более высокой температурой сверхпроводимости. Применение этих материалов в криогенном электромашиностроении упростит конструкцию криостатов и снизит стоимость криогенных электрических машин.
Исследования показали, что в ближайшие 10—20 лет криогенное электромашиностроение станет одним из ведущих направлений при создании электрических машин особо большой мощности, выполнение которых по традиционным принципам технически невозможно.
Магнитогидродинамические электрические машины. Рассмотрим принцип действия магнитогидродинамического (МГД) генератора, в котором тепловая энергия преобразуется непосредственно в электрическую. Принцип действия основан на том, что при движении рабочего тела, обладающего достаточной электропроводностью (электролита, жидкого металла, ионизированного газа), поперек силовых линий магнитного поля в этом рабочем теле индуцируется ЭДС и возникает ток, который через соответствующие электроды отводится во внешнюю электрическую цепь. Для пояснения воспользуемся упрощенной схемой МГД- генератора (рис. 3, а), в котором рабочим телом являются продукты сгорания топлива с присадкой, усиливающей их электропроводность. Топливо 1, воздух 2 и присадка 3 подаются н камеру сгорания 4. Образующийся при этом ионизированный газ выходит из сопла 5 и проходит через внутреннюю полость электромагнита 6 поперек магнитных силовых линий поля. В соответствии с явлением электромагнитной индукции в ионизированном газе наводится ЭДС, которая снимается двумя электродами 7 и подается во внешнюю цепь к потребителю rн. Ионизированный газ, пройдя через магнитное поле, выходит из генератора. Таким образом, в МГД-генераторе теплота, образуемая при сгорании топлива, непосредственно преобразуется в электрическую энергию, а поэтому необходимость в получении механической энергии отпадает (не нужны паровой котел и паровая турбина).
Исследования показали, что МГД-генераторы приобретают существенные преимущества перед тепловыми электростанциями традиционного действия лишь при условиях значительной единичной мощности (более 100 МВт) и изготовлении обмотки электромагнита из сверхпроводника, помещенного в криостат.
МГД-генераторы обратимы и могут работать в двигательном режиме. Обычно МГД-двигатели применяются для перемещения электропроводных жидкостей, их принято называть МГД- насосами. Для пояснения принципа работы МГД - насоса обратимся к рис. 3.3, б. Электропроводная жидкость, проходя через канал 1, попадает в пространство между полюсами N и S электромагнита. При этом через жидкость от электрода 2 к электроду 3 проходит электрический ток, который взаимодействует с магнитным полем и создает электромагнитные
Рис. 3.3. Принцип действия МГД-генератора (а) и МГД-двигателя (б)
силы, которые и «проталкивают» жидкость через межполюсное пространство электромагнита.
Подобные МГД-насосы могут применяться для транспортировки различных электропроводных жидкостей. Например, их можно использовать для перемещения расплавленного металла в литейном производстве.
Рассмотренные МГД-машины называют кондукционными, так как их конструкция предусматривает обязательное наличие электродов для съема или подачи электрического тока. Созданы также МГД-машины индукционные (асинхронные), в которых отсутствуют электроды, а ЭДС или электромагнитные силы возникают в результате взаимодействия перемещаемой электропроводной жидкости с бегущим магнитным полем [1].
Задачи для самостоятельного решения
1. ТРАНСФОРМАТОРЫ
Задача 1.1. Однофазный трансформатор включен в сеть с частотой тока 50 Гц. Номинальное вторичное напряжение U2ном, а коэффициент трансформации k. Определить число витков в обмотках w1 и w2, если в стержне магнитопровода трансформатора сечением Qст максимальное значение магнитной индукции Вmах (табл. 1.1).
Таблица 1.1
Величины | Варианты | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
U2ном, В | 230 | 400 | 680 | 230 | 230 | 400 | 400 | 680 | 230 | 230 |
k | 15 | 10 | 12 | 8 | 10 | 6 | 8 | 12 | 14 | 8 |
Qст м2 * 10-1 | 0,49 | 0,80 | 1,2 | 1,8 | 0,65 | 0,80 | 1,2 | 0,76 | 0,60 | 085 |
Вmax, Тл | 1,3 | 1,6 | 1,8 | 1,3 | 1,4 | 1,5 | 1,2 | 1,3 | 1,5 | и |
Задача 1.2. Для однофазного трансформатора номинальной мощностью Sном и первичным напряжением U1ном, мощностью короткого замыкания Рк.ном и напряжением к.з. uк рассчитать данные и построить график зависимости изменения вторичного напряжения ΔU от коэффициента нагрузки β, если коэффициент мощности нагрузки соs φ2 (табл. 1.2).
Таблица 1.2
Величины | Варианты | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Sном, кВА | 600 | 250 | 800 | 100 | 180 | 560 | 320 | 50 | 120 | 80 |
U1ном, кВ | 31,5 | 6,3 | 31,5 | 6,3 | 6,3 | 10 | 10 | 3,4 | 6,3 | 10 |
Рк.ном, кВт | 20 | 12 | 22 | 7 | 10 | 25 | 13 | 3,5 | 8 | 5,4 |
Uк, % | 8,5 | 6,5 | 8,5 | 5,5 | 6,5 | 7 | 6,5 | 5,5 | 5,5 | 6 |
cos φ2 | 0,75 (емк.) | 0,85 (инд.) | 0,80 (емк.) | 0,70 (инд.) | 1,0 | 0,85 (инд.) | 0,9 (емк.) | 1,0 | 0,80 (инд.) | 0,70 (инд.) |
Задача 1.3. Для однофазного трансформатора, данные которого приведены в задаче 1.2, рассчитать и построить график зависимости КПД от нагрузки η = f (β), если максимальное значение КПД трансформатора соответствует коэффициенту нагрузки β/ = 0,7.
Задача 1.4. Трехфазный трансформатор номинальной мощностью Sном и номинальными напряжениями (линейными) U1ном и U2ном имеет напряжение короткого замыкания uк, ток холостого хода i0, потери холостого хода Р0ном и потери короткого замыкания Р к.ном. Обмотки трансформатора соединены по схеме «звезда— звезда». Требуется определить параметры Т-образной схемы замещения, считая ее симметричной: r1 = r2' и х1 = х2'; определить КПД η и полезную мощность Р2, соответствующие значениям полной потребляемой мощности S1 = 0,25 Sном, S2 = 0,5 Sном, S3 = 0,75 Sном и S4 = Sном при коэффициентах мощности нагрузки соs φ2 = 0,8 и соs φ2 = 1, по полученным данным построить графики η =