Сети ЭВМ и телекоммуникации

Вид материалаДокументы
Вопрос №14. Особенности технологий Frame Relay, АТМ и SDH
Рис1. Структура сети с протоколом Frame Relay
Рис. 6.29. Два типа трафика: а - компьютерный
Мультимедийный трафик
Задержка пакетизации
Архитектура ATM
Основная скорость передачи
Основные преимущества технологии SDH
Подобный материал:
1   ...   7   8   9   10   11   12   13   14   15

Вопрос №14. Особенности технологий Frame Relay, АТМ и SDH


Протокол Frame Relay

Протокол Frame Relay обеспечивает коммутацию пакетов между пользовательскими интерфейсами — оконечным оборудованием данных (Data Terminal Equipment, DTE) и сетевыми интерфейсами (интерфейсами коммутаторов) — оконечным оборудованием каналов передачи данных (Data Circuit-terminating Equipment, DCE).

Рис1. Структура сети с протоколом Frame Relay

Технология получила свое название в связи с тем, что данные конвертируются в кадры (фреймы) переменной длины. Работа сети ускоряется из-за того, что управление сеансами связи и исправление ошибок возлагается на узлы, расположенные в сети. Пользователи арендуют постоянный виртуальный канал (Permanent Virtual Circuit - PVC), который предоставляет им выделенную WAN-линию без арендной платы.


Особенности протокола Frame Relay:
  • поддержка нескольких виртуальных соединений на один физический порт, множественные PVC;
  • управление скоростью передачи:
  • гарантированная скорость передачи (Committed Information Rate, CIR),
  • форсированная скорость передачи (Excess Information Rate, EIR);
  • поддержка уведомлений о насыщении сети.

Frame Relay поддерживает статистическое мультиплексирование многочисленных логических соединений по единственному физическому каналу. Статистическое мультиплексирование обеспечивает более эффективное и гибкое использование полосы пропускания сети и может применяться самостоятельно или в каналах на базе TDM.

Другим важным преимуществом Frame Relay является использование современных технологий передачи для глобальных сетей (WAN). Более ранние протоколы WAN (такие, как X.25) были разработаны во времена аналоговой связи по медным линиям, значительно менее надежной по сравнению с цифровой связью по оптоволоконным кабелям. Применение надежных и практически безошибочных оптических линий позволяет избавить протоколы канального уровня от исправления ошибок, передав эти функции протоколам более высоких уровней. Frame Relay просто отбрасывает ошибочные (с неверной контрольной суммой) пакеты, не пытаясь исправить ошибки (например, за счет повторной передачи).

Еще одним существенным отличием Frame Relay от X.25 является отсутствие явного (по виртуальным соединениям) управления потоком данных, поскольку в наше время подобные функции управления эффективно реализуются протоколами более высоких уровней. Вместо этого используется механизм уведомлений о приближении к состоянию насыщения, которые передаются на вышележащие уровни, где и реализуются функции управления потоком данных. Более точно, сообщения Backward Explicit Congestion Notification (BECN) передаются в направлении, противоположном затору, для уведомления передающей стороны, а сообщения Forward Explicit Congestion Notification (FECN) уведомляют принимающую сторону.

Современный стандарт Frame Relay поддерживает постоянные виртуальные соединения (Permanent Virtual Circuits, PVC), настраиваемые и управляемые в масштабах сети. Другим типом являются коммутируемые виртуальные соединения (Switched Virtual Circuits, SVC).

Использование сетей с ретрансляцией кадров целесообразно в том случае, если объем передаваемой информации не очень велик.


Протокол ATM

Технология ATM (Asynchronous Transfer Mode - асинхронный режим передачи) является коммутируемой технологией, предназначенной для одновременной передачи голоса и данных. Совмещает в себе подходы двух технологий - коммутации пакетов и коммутации каналов. От первой она взяла на вооружение передачу данных в виде адресуемых пакетов, а от второй - использование пакетов небольшого фиксированного размера, в результате чего задержки в сети становятся более предсказуемыми.

Особенности технологии АТМ лежат в области качественного обслуживания разнородного трафика и объясняются стремлением решить задачу совмещения в одних и тех же каналах связи и в одном и том же коммуникационном оборудовании компьютерного и мультимедийного трафика таким образом, чтобы каждый тип трафика получил требуемый уровень обслуживания и не рассматривался как «второстепенный».

Рис. 6.29. Два типа трафика: а - компьютерный;

б- мультимедийный

Трафик вычислительных сетей имеет ярко выраженный асинхронный и пульсирующий характер. Компьютер посылает пакеты в сеть в случайные моменты времени, по мере возникновения в этом необходимости. Чувствительность компьютерного трафика к потерям данных высокая, так как без утраченных данных обойтись нельзя и их необходимо восстановить за счет повторной передачи.

Мультимедийный трафик, передающий, например, голос или изображение, характеризуется низким коэффициентом пульсаций, высокой чувствительностью к задержкам передачи данных (отражающихся на качестве воспроизводимого непрерывного сигнала) и низкой чувствительностью к потерям данных (из-за инерционности физических процессов потерю отдельных замеров голоса или кадров изображения можно компенсировать сглаживанием на основе предыдущих и последующих значений). Сложность совмещения компьютерного и мультимедийного трафика с диаметрально противоположными характеристиками хорошо видна на рис. 1.

Подход, реализованный в технологии АТМ, состоит в передаче любого вида трафика пакетами фиксированной и очень маленькой длины в 53 байта. Пакеты АТМ называют ячейками - cell. Поле данных ячейки занимает 48 байт, а заголовок - 5 байт.

Размер ячейки АТМ является результатом компромисса между телефонистами и компьютерщиками - первые настаивали на размере поля данных в 32 байта, а вторые - в 64 байта.

Чем меньше пакет, тем легче имитировать услуги каналов с постоянной битовой скоростью, которая характерна для телефонных сетей. Для пакета, состоящего из 53 байт, при скорости в 155 Мбит/с время передачи кадра на выходной порт составляет менее 3 мкс. Так что эта задержка не очень существенна для трафика, пакеты которого должны передаваться каждые 125 мкс.

Однако на выбор размера ячейки большее влияние оказала не величина ожидания передачи ячейки, а задержка пакетизации. Задержка пакетизации - это время, в течение которого первый замер голоса ждет момента окончательного формирования пакета и отправки его по сети. При размере поля данных в 48 байт одна ячейка АТМ обычно переносит 48 замеров голоса, которые делаются с интервалом в 125 мкс. Поэтому первый замер должен ждать примерно 6 мс, прежде чем ячейка будет отправлена по сети. Именно по этой причине телефонисты боролись за уменьшения размера ячейки, так как 6 мс - это задержка, близкая к пределу, за которым начинаются нарушения качества передачи голоса. При выборе размера ячейки в 32 байта задержка пакетизации составила бы 4 мс, что гарантировало бы более качественную передачу голоса. А стремление компьютерных специалистов увеличить поле данных до 64 байт вполне понятно - при этом повышается полезная скорость передачи данных. Избыточность служебных данных при использовании 48-байтного поля данных составляет 10 %, а при использовании 32-байтного поля данных она сразу повышается до 16 %.

Формат фиксированной длины позволяет получать уникальные характеристики.
  • Ориентация на виртуальные каналы связи. Сетевые соединения, использующие ячейки, наиболее эффективно работают в режиме двухточечного соединения (point-to-point), когда принимающая станция находится в состоянии активности и готова к приему и обработке ячеек.
  • Скорость. Благодаря одинаковой величине ячеек устройства, обслуживающие технологию АТМ, могут точно определить заголовок ячейки и начало блока данных. Это ускоряет процесс обработки и позволяет АТМ-сетям работать со скоростью до 622 Мбит/с.
  • Качество обслуживания (QoS). Прогнозируемые скорости передачи данных и виртуальные каналы позволяют гарантировать высокий уровень обслуживания для большей части трафика.

АТМ-технология отличается от технологии Ethernet и Token Ring тем, что является коммутируемой технологией, в которой виртуальные каналы устанавливаются до начала передачи.

Еще одной отличительной чертой АТМ является то, что эта технология разработана для оптоволоконных кабелей, работающих в технических условиях синхронных оптических сетей (Synchronous Optical Network, SONET).

Архитектура ATM

Рис 2.

Архитектура (модель) ATM разработана организациями по стандартизации ANSI, ITU и ATM Forum. Данная модель состоит из трех уровней:
  • физического;
  • уровня ATM;
  • уровня адаптации ATM.

Физический уровень

Стандарты ATM для физического уровня определяют, как получать биты из среды передачи, преобразовывать их в ячейки и посылать эти ячейки уровню ATM. Кроме того, они описывают, какие кабельные системы должны использоваться в сетях ATM и с какими скоростями может работать ATM при каждом типе кабеля. На сегодняшний день наиболее распространенные скорости составляют 25, 155 и 622 Мбит/с.

Уровень ATM

Стандарты для уровня ATM описывают механизмы:
  • получения ячеек;
  • формирования заголовков и посылки ячеек уровню адаптации ATM;
  • установки соединения с требуемым качеством сервиса (QoS).

Уровень адаптации ATM и качество сервиса

На уровне адаптации ATM выполняются три функции:
  • форматируются пакеты;
  • предоставляется информация для уровня ATM, которая дает возможность устанавливать соединения с определенным качеством сервиса;
  • предотвращаются "заторы".

Уровень адаптации ATM состоит из пяти протоколов, называемых протоколами AAL. Эти протоколы принимают ячейки с уровня ATM, формируют из них данные и передают эти данные на более высокий уровень. Когда протоколы AAL получают данные с более высокого уровня, они разбивают их на ячейки и передают их уровню ATM.

Уровень адаптации ATM определяет также четыре категории сервиса:
  • постоянная скорость передачи (Constant Bit Rate, CBR);
  • переменная скорость передачи (Variable Bit Rate, VBR);
  • неопределенная скорость передачи (Unspecified Bit Rate, UBR);
  • доступная скорость передачи (Available Bit Rate, ABR).

Эти категории используются для обеспечения различного качества сервиса для разных типов трафика.

Категория CBR, гарантирующая самое высокое качество сервиса, применяется для чувствительного к задержкам трафика, такого как аудио- и видеоинформация. Данные при этом передаются с постоянной скоростью и малыми задержками, правда, за счет неэффективного использования полосы пропускания. Чтобы защитить трафик CBR от влияния других потоков, для соединения резервируется определенная часть полосы пропускания, даже если в данный момент не происходит никакой передачи.

Категория VBR существует в двух видах, которые используются для различных типов трафика:
  • VBR реального времени (Real-Time VBR, RT-VBR) применяют, когда требуется жесткая синхронизация между ячейками и поддержка чувствительного к задержкам трафика;
  • VBR без требований реального времени (Non-Real-Time VBR, NRT-VBR) не нуждается в жесткой синхронизации между ячейками и поддерживает допускающий задержки трафик.

Поскольку VBR не резервирует полосу пропускания, канал используется более эффективно, чем в случае CBR. Однако, в отличие от CBR, VBR не может гарантировать качества сервиса.

Категория UBR применяется для трафика, который допускает задержки. Подобно VBR, UBR не резервирует полосы пропускания для виртуального канала. В результате один виртуальный канал может применяться для нескольких передач. Однако, поскольку UBR не гарантирует качества сервиса, то в сильно загруженных сетях UBR-трафик теряет большое число ячеек, что вызывает много повторных передач.

Категория UBR применяется для трафика, который допускает задержки. Подобно VBR, UBR не резервирует полосы пропускания для виртуального канала. В результате один виртуальный канал может применяться для нескольких передач. Однако, поскольку UBR не гарантирует качества сервиса, то в сильно загруженных сетях UBR-трафик теряет большое число ячеек, что вызывает много повторных передач.

Категория ABR используется для передачи трафика, который допускает задержки и дает возможность многократно использовать виртуальные каналы. Однако, если UBR не резервирует полосы пропускания и не предотвращает потерь ячеек, то ABR обеспечивает для соединения допустимые значения ширины полосы пропускания и коэффициента потерь.

CBR, VBR, UBR, и ABR включают в себя следующие параметры качества сервиса (QoS):
  • коэффициент потерь ячеек (Cell Loss Ratio) определяет, какой процент высокоприоритетных ячеек может быть потерян за время передачи;
  • задержка передачи ячейки (Cell Transfer Delay) определяет время (или среднее время), требуемое для доставки ячейки адресату;
  • вариации задержек при передаче ячеек (Cell Delay Variation, CDV), большая величина CDV приводит к прерыванию аудио- и видеосигналов.

Способность ATM обеспечивать для приложений различные уровни качества сервиса считается одним из важнейших достоинств данной технологии.

SDH

Технология SDH (Synchronous Digital Hierarchy) обозначает стандарт для транспорта трафика. Стандарт определяет уровни скорости прохождения сигнала синхронного транспортного модуля (Synchronous Transport Module, STM). Стандарт также определяет физический (оптический) уровень, необходимый для совместимости оборудования от различных производителей.

Основная скорость передачи — 155,250 Мбит/с (STM-1). Более высокие скорости определяются как кратные STM-1: STM-4 — 622 Мбит/с, STM-16 — 2488,32 Мбит/с, STM-64 — 9953,28 Мбит/с.

Технология предполагает использование метода временного мультиплексирования (мультиплексирование — уплотнение канала, т.е. передача нескольких каналов данных с меньшей скоростью (пропускной способностью) по одному с большей при помощи устройства под названием мультиплексор.) (TDM) и кросс-коммутации тайм-слотов. При этом оконечное оборудование SDH оперирует потоками E1 (2,048 Мбит/с), к которым подключается клиентское оборудование. Основными устройствами сети являются SDH-мультиплексоры.

При построении сетей SDH обычно используется топология сети типа «кольцо» с двумя контурами. По одному из контуров передается синхронизирующая и сигнальная информация, по другому — основной трафик. Имеются специальные механизмы резервирования сети на случай выхода из строя одного из контуров. Возможно также подключение устройств по топологии «точка-точка», однако в таком случае отказоустойчивость решения будет ниже. Использование кольцевых топологий создает возможность автоматического переключения каналов при любых аварийных ситуациях на резервный путь. Данное свойство значительно повышает «живучесть» сети и позволяет проводить различного типа технологические работы без перерыва трафика.

Основные преимущества технологии SDH:
  • простая технология мультиплексирования/демультиплексирования;
  • доступ к низкоскоростным сигналам без необходимости мультиплексирования/ демультиплексирования всего высокоскоростного канала. Это позволяет достаточно просто осуществлять подключение клиентского оборудования и производить кросс-коммутацию потоков;
  • наличие механизмов резервирования на случай отказов каналов связи или оборудования;
  • возможность создания «прозрачных» каналов связи, необходимых для решения определенных задач, например для передачи голосового трафика между выносами АТС или передачи телеметрии;
  • возможность наращивания решения;
  • совместимость оборудования от различных производителей;
  • относительно низкие цены оборудования;
  • быстрота настройки и конфигурирования устройств.

Недостатки технологии SDH:
  • использование одного из каналов полностью под служебный трафик;
  • неэффективное использование пропускной способности каналов связи. Сюда относятся как необходимость резервирования полосы на случай отказов, так и особенности технологии TDM, не способной динамически выделять полосу пропускания под различные приложения, а также отсутствие механизмов приоритезации трафика;
  • необходимость использовать дополнительное оборудование (зачастую от других производителей), чтобы обеспечить передачу различных типов трафика (данные, голос) по опорной сети.

SONET (синхронная оптическая сеть) - это протокол для Северной Америки и Японии, а SDH - определение для Европы. Разница между SONET и SDH небольшая.