Новосибирский Государственный Технический Университет. Факультет автоматики и вычислительной техники Кафедра вычислительной техники (специальность 220100). учебное пособие
Вид материала | Учебное пособие |
0.11.2 Модели закраски 0.11.6 Трассировка лучей |
- Новосибирский Государственный Технический Университет. Факультет автоматики и вычислительной, 1650.9kb.
- Рабочая программа для специальности: 220400 Программное обеспечение вычислительной, 133.96kb.
- Государственный Технический Университет. Факультет: Автоматики и Вычислительной Техники., 32.46kb.
- Образования Республики Молдова Колледж Микроэлектроники и Вычислительной Техники Кафедра, 113.64kb.
- Постоянное развитие и углубление профессиональных навыков в области информационных, 54.56kb.
- «Программное обеспечение вычислительной техники и автоматизированных систем», 1790.14kb.
- Задачи дисциплины: -изучение основ вычислительной техники; -изучение принципов построения, 37.44kb.
- Лекция №2 «История развития вычислительной техники», 78.1kb.
- Система контроля и анализа технических свойств интегральных элементов и устройств вычислительной, 582.84kb.
- Московский государственный инженерно-физический институт (технический университет), 947.05kb.
0.11.2 Модели закраски
Существует три основных способа закраски многоугольников: однотонная закраска, закраска с интерполяцией интенсивности и закраска с интерполяцией векторов нормали.
При однотонной закраске предполагается, что и источник света и наблюдатель находятся в бесконечности, поэтому произведения L·N и R·V постоянны. На изображении могут быть хорошо заметны резкие перепады интенсивности между различно закрашенными многоугольниками. Если многоугольники представляют собой результат аппроксимации криволинейной поверхности, то изображение недостаточно реалистично.
В методе закраски с интерполяцией интенсивности (метод Гуро) нормали в вершинах многоугольников вычисляются как результат усреднения нормалей ко всем полигональным граням, которым принадлежит данная вершина. Используя значения нормалей, вычисляют интенсивности в вершинах по той или иной модели освещения. Эти значения затем используются для билинейной интерполяции: для данной строки сканирования вначале находят значения интенсивностей на ребрах, а затем линейно интерполируют между ними при закраске вдоль строки.
В методе закраски с интерполяцией нормали (метод Фонга) значение нормали вдоль строки интерполируется между значениями нормалей на ребрах для данной строки. Значения нормалей на ребрах получается как результат интерполирования между вершинами. Значения же нормалей в вершинах являются результатом усреднения, как и выше рассмотренном методе. Значение нормали для каждого из пикселов строки используется для вычислений по той или иной модели освещения.
0.11.3 Прозрачность
В простейшей модели прозрачности преломление не учитывается. При расчетах по такой модели могут использоваться любые алгоритмы удаления невидимых поверхностей, учитывающие порядок расположения многоугольников. При использовании построчных алгоритмов если передний многоугольник оказывается прозрачным, то определяется ближайший из оставшихся, внутри которых находится строка сканирования. Суммарная закраска определяется следующим образом:
|
где 0 k 1 - характеризует прозрачность ближнего многоугольника. Если k = 1, то он непрозрачен. Если же k = 0, то ближний многоугольник полностью прозрачен; Iб - интенсивность для пиксела ближнего многоугольника, Iд - дальнего.
0.11.4 Тени
Простой способ определения объектов, попавших в тень и, следовательно, неосвещенных, аналогичен алгоритму удаления невидимых поверхностей: те объекты, которые невидимы из источника освещения, но видимы из точки зрения находятся в тени. На первом шаге в алгоритме с учетом тени определяются все многоугольники, видимые из точки освещения. Затем выполняется удаление поверхностей невидимых из точки зрения. При выполнении закраски многоугольника проверяется не закрыт ли он многоугольником, видимым из источника освещения. Если да, то в модели освещения учитываются (если надо) все три компоненты - диффузное и зеркальное отражения и рассеянный свет. Если же перекрытия нет, то закрашиваемый многоугольник находится в тени и надо учитывать только рассеянный свет.
0.11.5 Фактура
Решение в лоб - представление в виде соответствующего (очень большого) количества многоугольников мало приемлемо. Более практичное решение - "натягивание" массива узора, полученного в результате оцифровки изображения реальной поверхности на раскрашиваемую. При этом значения из массива узора используются для масштабирования диффузной компоненты в модели освещения.
Для устранения лестничного эффекта должны учитываться все элементы узора, затрагивающие обрабатываемый пиксел изображения.
Такой метод влияет на раскраску поверхности, но оставляет ее гладкой. Неровности могут моделироваться возмущениями нормали поверхности. Другой способ, используемый при синтезе картин - метод фрактальной геометрии.
0.11.6 Трассировка лучей
Метод трассировки лучей используется не только для удаления невидимых частей, но, в основном, для получения высокореалистичных изображений с учетом отражений и преломлений света.
Прямой трассировкой лучей называется процесс расчета освещения сцены с испусканием от всех источников лучей во всех направлениях. При попадании на какой-либо объект сцены луч света может преломившись уйти внутрь тела или отразившись далее продолжить прямолинейное распространение до попадания на следующий объект и так далее. Следовательно, каждая точка сцены может освещаться либо напрямую источником, либо отраженным светом. Часть лучей в конце концов попадет в глаз наблюдателя и сформирует в нем изображение сцены.
Понятно, что вычисления, необходимые для трассировки всех лучей для всех источников и поверхностей слишком объемисты. Причем существенный вклад в полученное изображение внесет лишь небольшая часть оттрассированных лучей.
Для избавления от излишних вычислений используется обратная трассировка, в которой вычисляются интенсивности только лучей, попавших в глаз наблюдателя. В простейшей реализации обратной трассировки отслеживаются лучи, проходящие из глаза наблюдателя через каждый пиксел экрана в сцену. На каждой поверхности сцены, на которую попадает луч, в общем случае формируются отраженный и преломленный лучи. Каждый из таких лучей отслеживается, чтобы определить пересекаемые поверхности. В результате для каждого пиксела строится дерево пересечений. Ветви такого дерева представляют распространение луча в сцене, а узлы - пересечения с поверхностями в сцене. Окончательная закраска определяется прохождением по дереву и вычислением вклада каждой пересеченной поверхности в соответствии с используемыми моделями отражения. При этом различают и обычно по-разному рассчитывают первичную освещенность, непосредственно получаемую от источников света, и вторичную освещенность, получаемую от других объектов.