Тема: Древнегреческий учённый-математик архимед
Вид материала | Документы |
СодержаниеВавилония и египет Греческая математика Индия и арабы Средние века и возрождение Начало современной математики Современная математика |
- Древнегреческий ученый, математик и изобретатель. Сын астронома, Архимед родился, 225.29kb.
- Пифагор Самосский (VI в до н э.), древнегреческий философ, религиозный и политический, 240kb.
- Ок. 356-ок. 300 до н э. древнегреческий математик, автор первых дошедших до нас теоретических, 95.75kb.
- Пифагор Самосский (ок. 580 ок. 500 до н э.) древнегреческий философ, религиозный, 304.81kb.
- «Познание», 248.28kb.
- Древнегреческий театрпла н I. Введение. II. Древнегреческий театр, 352.04kb.
- Гг рождения и смерти неизвестны, вероятно, 200/214 284/298, 37.05kb.
- Проект по теме: «Ученые древности», 86.9kb.
- Доклад По философии на тему: Биография Пифагора Самосского, 106.58kb.
- Евклид или Эвклид, 20.36kb.
ЛИЦЕЙ №10
Тема:
Древнегреческий учённый-математик АРХИМЕД
Автор: БАЛАЕВА АНАСТАСИЯ
Ученица 6в класса
Консультант: КРУГЛОВА ЕЛЕНА ГЕНАДЬЕВНА
Учитель математики
2009/2010 уч. год.
содержание
Вступление.............................................................................................
1. Биография Архимеда .............................................................. 4-6
2. Его великие открытия .......................................................... 6-8
3. Его задачи ........................................................................….. 8-10
биография
Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, расположенного на восточном побережье острова Сицилии, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку. После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца. В теоретическом отношении труд этого великого ученого был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики.
Если ко всему перечисленному прибавить еще то, что сделано Архимедом в области механики, то станут понятными то изумление и уважение, с которыми к нему относились его современники и теперь относятся все те, кто близок к математике, механике и прикладным наукам.
Пленяет и высокий моральный облик Архимеда. Он был подлинным патриотом своего города. Когда настали тяжелые дни для Сиракуз и римские войска под командованием Марцелла осадили город с двух сторон и никто из осажденных уже не надеялся на спасение, вот тут-то и привел Архимед в действие свои машины, которые задолго до этого он построил.
«В неприятельскую пехоту неслись пущенные им раз личного рода стрелы и невероятной величины камни с шумом и страшной быстротой. Решительно ничто не могло вынести силы их удара; они опрокидывали тех, в кого они попадали, и расстраивали их ряды. На море внезапно поднимались со стен над кораблями бревна, загнутые на подобие рога. Одни из них ударяли в некоторые корабли сверху и силой удара топили их; другие железными ла пами или клювами, наподобие журавлиных, схватывали корабли за носы, поднимали их на воздух, ставили корабль на корму и затем топили . . . Часто корабль поднимало высоко над поверхностью моря, и, вися в воздухе, он к ужасу окружающих качался в разные стороны, являя собой страшное зрелище, пока весь экипаж не был сброшен или перестрелян . . . Самбука, машина, которую Марцелл поставил на несколько кораблей и подводил к стенам . . . еще далеко не успела подойти к ним, как из-за них вылетел камень весом в десять талантов, за ним другой, третий . . . Они падали на машину со страшным шумом и силой, разбили ее корпус, разорвали болты и уни чтожили связи, так что Марцелл, не зная что делать, решил отплыть поспешно с флотом и приказал пехоте отступать ... но стрелы и здесь настигали их, попадали в отступающих, так что они понесли большие потери . . . Марцелл все же успел избежать опасности. Он шутил над своими техниками и механиками и говорил: «Уж не перестать ли нам драться с математиком? Он, сидя спо койно за стеной, топит наши корабли и, бросая в нас разом столько стрел, оставляет позади мифических сто руких великанов. Действительно, все остальные сираку зяне служили своего рода телом архимедовых машин, один он был душой, которая всех двигала, все направ ляла» (Плутарх).
Машины Архимеда могли защитить город только от неприятельских приступов, но не могли спасти осажденных от голода. Марцеллу удалось, наконец, ворваться в город. Взятие Сиракуз, как и других городов, попавших в руки римлян, сопровождалось невероятными актами жестокости, убийствами и грабежами. В числе убитых был и Архимед.
Плутарх пишет: «Он находился один в своем жилище, углубленный в рассмотрение геометрических чертежей. Будучи всем умом и чувствами погружен в размышления, он не обратил внимания на шум и крики римлян, вор вавшихся в город. Вдруг перед ним предстал римский солдат. Архимед успел только крикнуть: «Не трогай моих чертежей, -как меч солдата поразил его».
В заключение хочется привести высказывание Плу тарха о глубине геометрических положений Архимеда.
«Во всей геометрии нет теорем более трудных и более глубоких, нежели теоремы Архимеда.
Мне самому всегда казалось, когда я впервые знако мился с его математическими предложениями, что они до того трудны, что ум человеческий не в состоянии найти им доказательства. Однако, когда узнаешь, как сам Архимед их доказывает, то тебе кажется, будто ты сам нашел это доказательство — до того оно просто и легко».
великие открытия архимеда
В сочинении "Параболы квадратуры" Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде "Об измерении круга" Архимед впервые вычислил число "пи" - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел. Некоторые теоремы планиметрии также впервые были доказаны Архимедом. Так, теорема о площади треугольника по трем его сторонам
указанную формулу называют формулой Герона, потому что ему принадлежит заслуга широкого применения её на практике.
приписываемая Герону, впервые была предложена Архимедом. Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир. Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика, первый закон которой открыл Архимед (закон, носящий имя Архимеда), согласно которому на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости. Однажды приподнявши ногу в воде, Архимед констатировал с удивлением, что в воде нога стала легче. "Эврика! Нашел!" - воскликнул он, выходя из своей ванны. Анекдот занятный, но, переданный таким образом, он не точен. Знаменитое "Эврика!" было произнесено не в связи с открытием закона Архимеда, как это часто говорят, но по поводу закона удельного веса металлов - открытия, которое также принадлежит сиракузскому ученому и обстоятельные детали которого находим у Витрувия. Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на нее золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочередно положил их в сосуд с водой, отметил, на сколько поднялся ее уровень. Опустив в сосуд корону, Архимед установил, что ее объем превышает объем слитка. Так и была доказана недобросовестность мастера. Любопытен отзыв Цицерона, великого оратора древности, увидевшего "архимедову сферу" - модель, показывающую движение небесных светил вокруг Земли: "Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть". И, наконец, Архимед был не только великим ученым, он был, кроме того, человеком, страстно увлеченным механикой. Он проверяет и создает теорию пяти механизмов, известных в его время и именуемых "простые механизмы". Это - рычаг ("Дайте мне точку опоры, - говорил Архимед, - и я сдвину Землю"), клин, блок, бесконечный винт и лебедка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот.
Впоследствии эти механизмы широко применялись в разных странах мира. Интересно, что усовершенствованный вариант водоподъемной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке. Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, - к изобретению болта, сконструированного из винта и гайки. Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебедку, нашел средство, к удивлению зевак, спустить на воду тяжелую галеру, севшую на мель, со всем ее экипажем и грузом. Еще более убедительное доказательство он дал в 212 году до нашей эры.
Задачки с решениями
1. Дана окружность, радиус которой принят за 1. Построить вне ее ряд окружностей, концентрических с ней, так чтобы полученные кольца были все равновелики
между собой и площадь каждого из них равнялась бы площади меньшего круга (рис. 58).
2. Сторона правильного треугольника равна а. Из центра его радиусом a/3 описана окружность. Определить площадь части треугольника, лежащей вне окружности (рис. 59).
3. Центры четырех кругов расположены в вершинах квадрата со стороной а. Радиусы всех кругов равны а. Вычислить площадь части плоскости, общей для всех кругов (рис. 60).
4. Найти площадь фигуры (рис. 61), если 01А = а.
Софизм
Число π равно 2.
На отрезке АВ как на диаметре построим полуокружность (рис. 62), разделив отрезок АВ пополам, на каждой
половине как на диаметре вновь построим полуокружности, располагая их по разные стороны от АВ. Эти
две полуокружности составят волнообразную линию длина которой от A до B равна длине первоначальной полуокружности. Теперь разделим отрезок АВ на четыре равные части и построим волнообразную линию, со стоящую из четырех полуокружностей, с прежней суммой длин π*AB/2. Будем продолжать этот процесс неограниченно, деля отрезок АВ на 8, 16, ... равных частей и строя на них полуокружности, поочередно расположенные с одной и с другой стороны прямой АВ Получится по следовательность волнообразных линий, все более при ближающихся к отрезку АВ и имеющих его своим пре делом. В самом деле, как бы не была узка полоса, обра зованная прямыми KL и MN, параллельными АВ, найде тся в нашей последовательности такое место, начиная с которого все волнообразные линии на всем своем протяжении от A до B будут целиком умещаться внутри полосы. Но длина у всех волнообразных линий одинакова и равна π*AB/2. Такова же должна быть длина предела этих линий, т.е. отрезка AB Из равенства
(π/2)*AB=AB находим π = 2.
Список литературы
Ф. Рудио, О квадратуре круга, ГТТИ, 1934.
В. П. Щереметевский, Очерки по истории математики, Учпедгиз, 1940.
С. Я. Лурье, Архимед, АН СССР, 1945.
С. Н. Ш рей дер, Три задачи древней геометрии. Из опыта проведения внеклассной работы по математике в средней школе, Учпедгиз, 1955.
В. И. Лебедев, Очерки по истории точных наук, вып. 4, Знаменитые задачи древности, М., 1917.
История математики
МАТЕМАТИКИ ИСТОРИЯ. Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н.э. благодаря вавилонянам и египтянам.
ВАВИЛОНИЯ И ЕГИПЕТ
Вавилония. Источником наших знаний о вавилонской цивилизации служат хорошо сохранившиеся глиняные таблички, покрытые т.н. клинописными текстами, которые датируются от 2000 до н.э. и до 300 н.э. Математика на клинописных табличках в основном была связана с ведением хозяйства. Арифметика и нехитрая алгебра использовались при обмене денег и расчетах за товары, вычислении простых и сложных процентов, налогов и доли урожая, сдаваемой в пользу государства, храма или землевладельца. Многочисленные арифметические и геометрические задачи возникали в связи со строительством каналов, зернохранилищ и другими общественными работами. Очень важной задачей математики был расчет календаря, поскольку календарь использовался для определения сроков сельскохозяйственных работ и религиозных праздников. Деление окружности на 360, а градуса и минуты на 60 частей берут начало в вавилонской астрономии.
Вавилоняне создали и систему счисления, использовавшую для чисел от 1 до 59 основание 10. Символ, обозначавший единицу, повторялся нужное количество раз для чисел от 1 до 9. Для обозначения чисел от 11 до 59 вавилоняне использовали комбинацию символа числа 10 и символа единицы. Для обозначения чисел начиная с 60 и больше вавилоняне ввели позиционную систему счисления с основанием 60. Существенным продвижением стал позиционный принцип, согласно которому один и тот же числовой знак (символ) имеет различные значения в зависимости от того места, где он расположен. Примером могут служить значения шестерки в записи (современной) числа 606. Однако нуль в системе счисления древних вавилонян отсутствовал, из-за чего один и тот же набор символов мог означать и число 65 (60 + 5), и число 3605 (602 + 0 + 5). Возникали неоднозначности и в трактовке дробей. Например, одни и те же символы могли означать и число 21, и дробь 21/60 и (20/60 + 1/602). Неоднозначность разрешалась в зависимости от конкретного контекста.
Вавилоняне составили таблицы обратных чисел (которые использовались при выполнении деления), таблицы квадратов и квадратных корней, а также таблицы кубов и кубических корней. Им было известно хорошее приближение числа
Около 700 до н.э. вавилоняне стали применять математику для исследования движений Луны и планет. Это позволило им предсказывать положения планет, что было важно как для астрологии, так и для астрономии.
В геометрии вавилоняне знали о таких соотношениях, например, как пропорциональность соответствующих сторон подобных треугольников. Им была известна теорема Пифагора и то, что угол, вписанный в полуокружность – прямой. Они располагали также правилами вычисления площадей простых плоских фигур, в том числе правильных многоугольников, и объемов простых тел. Число p вавилоняне считали равным 3.
Египет. Наше знание древнеегипетской математики основано главным образом на двух папирусах, датируемых примерно 1700 до н.э. Излагаемые в этих папирусах математические сведения восходят к еще более раннему периоду – ок. 3500 до н.э. Египтяне использовали математику, чтобы вычислять вес тел, площади посевов и объемы зернохранилищ, размеры податей и количество камней, требуемое для возведения тех или иных сооружений. В папирусах можно найти также задачи, связанные с определением количества зерна, необходимого для приготовления заданного числа кружек пива, а также более сложные задачи, связанные с различием в сортах зерна; для этих случаев вычислялись переводные коэффициенты.
Но главной областью применения математики была астрономия, точнее расчеты, связанные с календарем. Календарь использовался для определения дат религиозных праздников и предсказания ежегодных разливов Нила. Однако уровень развития астрономии в Древнем Египте намного уступал уровню ее развития в Вавилоне.
Древнеегипетская письменность основывалась на иероглифах. Система счисления того периода также уступала вавилонской. Египтяне пользовались непозиционной десятичной системой, в которой числа от 1 до 9 обозначались соответствующим числом вертикальных черточек, а для последовательных степеней числа 10 вводились индивидуальные символы. Последовательно комбинируя эти символы, можно было записать любое число. С появлением папируса возникло так называемое иератическое письмо-скоропись, способствовавшее, в свою очередь, появлению новой числовой системы. Для каждого из чисел от 1 до 9 и для каждого из первых девяти кратных чисел 10, 100 и т.д. использовался специальный опознавательный символ. Дроби записывались в виде суммы дробей с числителем, равным единице. С такими дробями египтяне производили все четыре арифметические операции, но процедура таких вычислений оставалась очень громоздкой.
Геометрия у египтян сводилась к вычислениям площадей прямоугольников, треугольников, трапеций, круга, а также формулам вычисления объемов некоторых тел. Надо сказать, что математика, которую египтяне использовали при строительстве пирамид, была простой и примитивной.
Задачи и решения, приведенные в папирусах, сформулированы чисто рецептурно, без каких бы то ни было объяснений. Египтяне имели дело только с простейшими типами квадратных уравнений и арифметической и геометрической прогрессиями, а потому и те общие правила, которые они смогли вывести, были также самого простейшего вида. Ни вавилонская, ни египетская математики не располагали общими методами; весь свод математических знаний представлял собой скопление эмпирических формул и правил.
Хотя майя, жившие в Центральной Америке, не оказали влияния на развитие математики, их достижения, относящиеся примерно к 4 в., заслуживают внимания. Майя, по-видимому, первыми использовали специальный символ для обозначения нуля в своей двадцатиричной системе. У них были две системы счисления: в одной применялись иероглифы, а в другой, более распространенной, точка обозначала единицу, горизонтальная черта – число 5, а символ
ГРЕЧЕСКАЯ МАТЕМАТИКА
Классическая Греция. С точки зрения 20 в. родоначальниками математики явились греки классического периода (6–4 вв. до н.э.). Математика, существовавшая в более ранний период, была набором эмпирических заключений. Напротив, в дедуктивном рассуждении новое утверждение выводится из принятых посылок способом, исключавшим возможность его неприятия.
Настаивание греков на дедуктивном доказательстве было экстраординарным шагом. Ни одна другая цивилизация не дошла до идеи получения заключений исключительно на основе дедуктивного рассуждения, исходящего из явно сформулированных аксиом. Одно из объяснений приверженности греков методам дедукции мы находим в устройстве греческого общества классического периода. Математики и философы (нередко это были одни и те же лица) принадлежали к высшим слоям общества, где любая практическая деятельность рассматривалась как недостойное занятие. Математики предпочитали абстрактные рассуждения о числах и пространственных отношениях решению практических задач. Математика делилась на арифметику – теоретический аспект и логистику – вычислительный аспект. Заниматься логистикой предоставляли свободнорожденным низших классов и рабам.
Греческая система счисления была основана на использовании букв алфавита. Аттическая система, бывшая в ходу с 6–3 вв. до н.э., использовала для обозначения единицы вертикальную черту, а для обозначения чисел 5, 10, 100, 1000 и 10 000 начальные буквы их греческих названий. В более поздней ионической системе счисления для обозначения чисел использовались 24 буквы греческого алфавита и три архаические буквы. Кратные 1000 до 9000 обозначались так же, как первые девять целых чисел от 1 до 9, но перед каждой буквой ставилась вертикальная черта. Десятки тысяч обозначались буквой М (от греческого мириои – 10 000), после которой ставилось то число, на которое нужно было умножить десять тысяч
Дедуктивный характер греческой математики полностью сформировался ко времени Платона и Аристотеля. Изобретение дедуктивной математики принято приписывать Фалесу Милетскому (ок. 640–546 до н.э.), который, как и многие древнегреческие математики классического периода, был также философом. Высказывалось предположение, что Фалес использовал дедукцию для доказательства некоторых результатов в геометрии, хотя это сомнительно.
Другим великим греком, с чьим именем связывают развитие математики, был Пифагор (ок. 585–500 до н.э.). Полагают, что он мог познакомиться с вавилонской и египетской математикой во время своих долгих странствий. Пифагор основал движение, расцвет которого приходится на период ок. 550–300 до н.э. Пифагорейцы создали чистую математику в форме теории чисел и геометрии. Целые числа они представляли в виде конфигураций из точек или камешков, классифицируя эти числа в соответствии с формой возникающих фигур («фигурные числа»). Слово «калькуляция» (расчет, вычисление) берет начало от греческого слова, означающего «камешек». Числа 3, 6, 10 и т.д. пифагорейцы называли треугольными, так как соответствующее число камешков можно расположить в виде треугольника, числа 4, 9, 16 и т.д. – квадратными, так как соответствующее число камешков можно расположить в виде квадрата, и т.д.
Из простых геометрических конфигураций возникали некоторые свойства целых чисел. Например, пифагорейцы обнаружили, что сумма двух последовательных треугольных чисел всегда равна некоторому квадратному числу. Они открыли, что если (в современных обозначениях) n2 – квадратное число, то n2 + 2n +1 = (n + 1)2. Число, равное сумме всех своих собственных делителей, кроме самого этого числа, пифагорейцы называли совершенным. Примерами совершенных чисел могут служить такие целые числа, как 6, 28 и 496. Два числа пифагорейцы называли дружественными, если каждое из чисел равно сумме делителей другого; например, 220 и 284 – дружественные числа (и здесь само число исключается из собственных делителей).
Для пифагорейцев любое число представляло собой нечто большее, чем количественную величину. Например, число 2 согласно их воззрению означало различие и потому отождествлялось с мнением. Четверка представляла справедливость, так как это первое число, равное произведению двух одинаковых множителей.
Пифагорейцы также открыли, что сумма некоторых пар квадратных чисел есть снова квадратное число. Например, сумма 9 и 16 равна 25, а сумма 25 и 144 равна 169. Такие тройки чисел, как 3, 4 и 5 или 5, 12 и 13, называются пифагоровыми числами. Они имеют геометрическую интерпретацию, если два числа из тройки приравнять длинам катетов прямоугольного треугольника, то третье число будет равно длине его гипотенузы. Такая интерпретация, по-видимому, привела пифагорейцев к осознанию более общего факта, известного ныне под названием теоремы Пифагора, согласно которой в любом прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Рассматривая прямоугольный треугольник с единичными катетами, пифагорейцы обнаружили, что длина его гипотенузы равна