Конспект По дисциплине «Направляющие системы электросвязи» Для студентов
Вид материала | Конспект |
- Рабочей программы дисциплины Направляющие среды электросвязи по направлению подготовки, 41.53kb.
- Рабочая программа учебной дисциплины «Направляющие среды электросвязи» Направление, 160.79kb.
- Рабочая программа учебной дисциплины «Системы документальной электросвязи» Направление, 196.39kb.
- Аннотация примерной программы дисциплины «Направляющие среды электросвязи» Рекомендуется, 496.76kb.
- Аннотация примерной программы дисциплины «Направляющие среды электросвязи» Рекомендуется, 285.22kb.
- Контрольная работа По дисциплине: Технические средства управления На тему: Классификация, 354.73kb.
- Конспект лекций по дисциплине «сетевые технологии» (дополненная версия) для студентов, 2520.9kb.
- Конспект лекций организация производства и маркетинг для студентов 3 курса специальностей, 2989.73kb.
- Конспект лекций для студентов по специальности i-25 01 08 «Бухгалтерский учет, анализ, 2183.7kb.
- Дипломного проекта, 142.12kb.
МЕРЫ ЗАЩИТЫ ОТ ВЗАИМНЫХ ВЛИЯНИЙ НА ЛИНИЯХ СВЯЗИ
6.1. Симметрирование кабeлей связи
Симметрирование - это комплекс мероприятий и электрических измерений, проводимых в процессе строительства и монтажа кабельных линий связи. На ГТС симметрируют в основном кабели межстанционных соединительных линий, большой протяженности. На практике используют следующие основные методы симметрирования: метод скрещивания, конденсаторный метод и метод концентрированного включения контуров противосвязи.
Симметрирование скрещиванием основано на компенсации электромагнитных связей одного отрезка кабеля связями другого отрезка путем скрещивания жил цепей.
Конденсаторное симметрирование основано на компенсации электpических связей путем включения конденсаторов междy жилами взаимовлияющих цепей.
Симметрирование включением контурoв противосвязи основано на компенсации электромагнитных связей путем включения между жилами взаимовлияющих цепей контуров противосвязи, содержащих резисторы и конденсаторы.
Конденсаторное симметрирование компенсирует только электрические связи, поэтому оно применяется в основном для низкочастотных кабелей, в которых эти связи являются определяющими. Симметрирование скрещиванием применяется как для низкочастотных, так и для высокочастотных кабелей. Концентрированное
симметрирование контурами противосвязи в основном применяется для ВЧ кабелей.
Отличительная особенность симметрирования НЧ и ВЧ кабелей заключается в следующем. Рабочее затухание кабeля в области низких частот весьма мало, поэтому симметрирование НЧ кабелей по результатам измерения защищенности на дальнем конце может изменять влияние на ближнем конце, и наоборот. Поэтому НЧ кабели симметрируют на длине шага симметрирования (расстояние между смежными точками симметрирования). Длина шага симметрирования 1,2...1,7 км. На высоких частотах рабочее затухание велико, поэтому симметрирование по результатам измерения взаимных влияний на дальнем конце не изменяет влияния на ближнем концe. Это позволяет выполнять симметрирование ВЧ кабелeй на длине элементарного кабельного участка (ЭКУ).
Взаимные влияния между цепями внутри четверок существенно больше, чем между цепями разных четверок, поэтому наиболее сложным и трудоемким является симметрирование внутричетверочных комбинаций цепей. Между электрическими (емкостными) и магнитными (индуктивными) связями имеет место достаточно тесная корреляция. Для кабелей c однороднoй изоляцией жил справедливо соотношение m=kZв2, поэтому компенсацию электромагнитных связей методом скрещивания можно рассматривать, оперируя только одной связью. C физической точки зрения удобно рассматривать емкостные связи между цепями четверки и емкостные асимметрии цепей четверки относительно заземленной обoлочки (рис. 6.1), величина котoрых характеризует степень взаимных влияний как в низкoчастотных, так и в высокочастотных кабелях связи.
По одной четверке можно организовать в диапазоне низких частот три цепи: две основные и одну фантомную (искусственную).
Согласно рис. 6.2, первая основная цепь образована жилами 1 и 2, вторая основная цепь - жилами 3 и 4, а фантомная цепь образована c помощью четырех линейных трансформаторов со средними точками.
При подключенном к средним точкaм генераторе по полуобмоткам трансформатoров протекают равные, но противоположно направленные токи. Поэтому их магнитные потоки компенсируют друг друга и ток в станционной обмотке равен нулю. Аналогичное явление наблюдается и на противоположном конце линии при подключении к средним точкам нагрузки.
При этом прямым проводом фaнтомной цепи является первая основная цепь, a обратным проводом - вторaя основная цепь. Таким образом, по указанным целям организуются три независимые связи.
Согласно рис. 6.1, можно записать приближенные выражения для коэффициентов емкостной связи и емкостной асимметрии (без учета влияния соседних четверок):
6.2. Симметрирование скрещиванием
При прямом соединении жил в кабеле электромагнитные связи складываются, a при скрещивании - вычитаются. B кабелях связи конструктивные неоднородности носят случайный характер, поэтому и электромагнитные связи по длине распределены по случайному закону. Это вызывает необходимость подбора схем скрещивания жил кабеля для каждого конкретного случая.
Поскольку вариантов соединения жил кабеля два, a цепей три, то существует 23=8 способов соедикения жил в четверке. Схема соединения жил записывается в видe оператора скрещивания. Первый знак оператора относится к первой основной цепи, второй - ко второй, а третий - к фантомной. Соединение жил напрямую обозначается (•), a со скрещиванием (Х). Операторы скрещивания и соответствующие им схемы соединения жил в четверке приведены в табл. 6.1.
На ГТС НЧ кабели связи имеют обычно небольшую протяженность и по параметрам взаимного влияния, как правило, удовлетворяют установленным нормам и симметрированию не подвергаются. Поэтому подбор оптимaльных операторов скрещивания проводится при симметрировании высокочастотных кабелей.
6.3 Технология симметрирования высокочастотных
кабелей связи
Высокочастотные кабели связи симметрируют на длине ЭКУ в два этапа: в процессе монтажа и на смонтированных ЭКУ. При к этом для обеспечения более высокой однородности линейного тракта и облегчения последующего симметрирования на стадии подготовительных работ проводят группирование строительных длин кабеля по средним значениям рабочей емкости цепей и по величине переходного затухания на ближнем конце. Строительные длины кабеля следyет прокладывать в такой последовательности, чтобы средние значения рабочей емкости смежных стоительных длин отличались не более чем на 0,2 нгД/км. Ha подходах к усилительным пунктам должны быть проложены две-три стронтельные длины кабеля c величиной переходного затухзния на ближнем конце А0>65 дБ. Выполнение этих мeроприятий позволяет снизить составляющие влияния на дальнем конце за счет несогласованности линии и аппаратуры и конструктивных неоднородностей, a тaкже выполнить норму на величину Ао на длине ЭКУ.
При монтаже строительных длин кабеля в соединительных муфтах в каждой четверке жилы соединяют по оператору (Х••), что обеспечивает уменьшение систематической составляющей влияния через третьи цепи и повышает эффективность концентрированного симметрирования. На смонтированном ЭКУ проводят концентрированное симметрирование по результатам измерения защищенности на дальнем конце прибором ВИЗ-600 (визуальный измеритeль переходного затухания) или комплексных связей на дaльнeм конце прибором ИКС-600 (измеритель комплексных связей) в диапазоне частот до 600 кГ'ц. При этом симметрирование выполняют в трех симметрирующих муфтaх, расположенных примерно на одинаковом расстоянии друг от друга, сначaла методом скрещивания, a затем цепи, не удовлетворяющие нормам, симметрируют путем включeния контуров противосвзи.
Подбор оптимальных операторов в трех точках на длине ЭКУ - весьма тpудоемкая работа. Достаточно скaзать, что при восьми операторах в каждой точке общее число возможных сочетаний равно 83=512.
Для экономии времени и затрат на симметрирование существует методика кратчайшего подбора операторов скрещивания, которая заключаeтся в следующем. Многообразие операторов скрещивания делится на две группы. При использовании операторов первой группы (•••, ХХ•, ••Х, ХХХ) комплексные связи соединяемых отрезков кабеля складываются, a при использовании операторов второй группы (Х••, •Х• ,Х•Х, •ХХ) вектор комплексной связи первого отрезка поворачивaется, на 180° и связи соединяемых отрезков кабеля вычитаются.
На первом этапе проверяют все частотные характеристики защищенности (комплексной связи), получающиеся при скрещивании жил в трех точках по основным операторам обеих групп (•••) и(Х••). Цель первого этапа - определение оптимального соединения жил для каждой муфты. На этом этапе нужно проанализировать всего 23=8 сочетаний операторов скрещивания. В подавляющем большинстве случаев уже на первом этапе удается получить нужную прибавку защищенности от скрещивания.
На втором этапе в каждой муфте следует применять операторы только той группы, основной оператор которой вошел в наилучшее сочетание из восьми, найденное ранее.
Если скрещиванием не удается достичь нормы защищенности цепей на дальнем конце (ддя соединительных линий ГТС А3>65,2.дБ), то проводят концентрированное симметрирование с помощью контуров противосвязи, подбираемых с помощью приборов. При этом пользуются переменным симметрирующим контуром RC.
На протяженных междугородных кабельных линиях в настоящее время применяют методы симметрирования при помощи компенсирующих четырехполюсников, которые включают не в симметрирующих муфтах, а непосредственно на необслуживаемых или обслуживаемых усилительных пунктах. При этом элементы компенсирующих четырехполюсников синтезируют по годографам комплексных электромагнитных связей (см. п. 6.4).
6.4. Концентрированное симметрирование при помощи контуров противосвязн
Этот метод находит широкое применение при симметрировании ВЧ кабелей связи. В его основе лежит компенсаиия токов помех, вызываемых электромагнитными связями, токами компенсаиии, создаваемыми контурами противосвязи, которые концентрируются в отдельных точках ЭКУ. Элементы контура противосвязи подбирают так, чтобы контур создавал ток компенсации I2k , равный по амплитуде и противоположный по фазе току помех I21 (рис. 6.3, а).
Рассмотрим эффективность концентрированного симметрирования на дальнем и ближнем концах. На рис. 6.3 сосредоточенные электромагнитные связи на дальием F12 и ближнем N12 концах, включенные на расстоянии х от начала линии, отображают реальные электромагнитные связи, имеющие распределенный по длине характер. Противосвязи на дальнем F12k и ближнем N12k концах, включенные на расстоянии а от начала линии, должны обеспечить компенсацию мешаюших токов, переходящих в цепь, подверженную влиянию.
Условие компенсации при влиянии на дальнем конце характеризуется равенством
из которого нетрудно видеть, что в случае, когда коэффициенты распространения взаимовлияющих цепей равны друг другу (γ1=γ2), условие компенсации F12k= -F12 выполмяется независимо от места включения контура противосвязи. Из рис. 6.3, а видно, что токи I21 и I21k проходят одинаковые пути, поэтому достаточно только nодобрать элементы контура противосвязи так,чтобы они воспроизводили частотную характеристику действующей между цепями электромагнитной связи и тем самым обеспечивали высокую степень компенсации (I21k) в широком диапазоне частот.
Условие компенсации на ближнем конце залисывается так:
Из этого равенства следует, что достичь компенсации мешающих токов на ближнем конце можно только путем включения контура противосвязи в месте расположения электромагнитной связи, т. е. при выполнении условия х=α. Если учесть, что в действительности электромагнитные связи, как отмечено выше, носят распределённый характер, то становится ясно, что для получения компенсации нужно между цепями включать большое число контуров противосвязи, что практически неприемлемо. Кроме того, в связи с тем, что коэффициенты распространения (главным образом коэффициенты фазы) зависят от частоты, то добиться высокой компенсации на ближнем конце можно только на одной частоте. На других же частотах эффективная компенсация не наблюдается. Причем на частотах, удаленных от частоты с высокой степенью компенсации, включенный контур может даже увеличить взаимные влияния. Физически это можно объяснить тем, что токи I20 и I20K проходят разные пути (рис. 6.1, б), претерпевают разные амплитудные и фазовые изменения и условие компенсации I20k= - I20 не выполняется. По указанным причинам концентрированное симметрирование на ближнем конце не применяют.
Таким образом, концентрированное симметрирование ВЧ кабелей проводят только на дальнем конце, симметрируя кабели на длине элементарного кабельного участка. При этом, как правило, применяют схемы контуров противосвязи, представленные на рис. 6.4.
Как отмечалось выше, электромагнитные связи между цепями в области высоких частот носят комплексный характер, поэтому в теории симметрирования кроме переходного затухания и защищенности между цепями широко пользуются характеристикой взаимного влияния - nроводимостью комплексной связи, выражаемой в микросистемах:
Из этого выражения следует, что проводимость комплексной связи есть вектор, угловое смещение которого равно разности фаз тока помех и влияющего напряжения. Между проводимостью комплексной связи и защищенностью между цепями существуют следующие соотношения:
из которых следует, что чем больше защищенность между цепями, тем меньше длина вектора комплексной связи и, наоборот, чем больше модуль связи, тем меньше защищенность. Соотношения (6.4) считаются основыми в инженерной теории симметрирования.
Второе основное соотношение симметрирования связывает проводимость комплексной связи между цепями с частичными проводимостями между жилами цепей:
Схема (рис. 4.3, а) аналогична мосту переменного тока, поэтому соотношение (6.5) можно использовать при рассмотрении симметрирования как процесса уравновешивания моста переменного така путем изменения проводимости его плеч.
Так как симметрирование проводится с помощью контуров противосвязи, содержащих конденсаторы и резисторы, то можно записать
Противоположные плечи моста эквивалентны, поэтому, отнеся суммы частичных проводимостей одного знака к одному из плеч, выражение (6.6) можно упростить:
По причине конструктивных и диэлектрических неоднородностей частичные проводимости носят случайный характер, поэтому при Y≠0 возможны четыре характерных варианта расположения на комплексной плоскости вектора проводимости комплексной связи между цепями (рис. 6.5)
1. Если g13> g14 и С13>С14 ,то действительная и мнимая части проводимости комплексной связи положительны и вектор Y находится в 1 квадранте комплексной плоскости. Для его компенсаиии необходимо создать вектор противосвязи Yп, расположенный в 3 квадранте. Такой вектор противосвязи можно создать подключением между жилами 1 и 4 контура противосвязи, состоящего из конденсатора и резистора (рис. 6.5, а). Последовательное соединение элементов контура выбрано исходя из таго, что включение контура не должно изменять величину сопротивления изоляции жил кабеля.
2. Если g13< g14 и С13>С14 ,то вектор Y расположен в 4 квадранте и для размещения вектора противосвязи Yп в 1 квадранте необходимо включить контур противосвязи между жилами 1 и 3 (рис. 6.5, Б).
3. Если g13< g14 и С13>С14 ,то действительная часть проводимости комплексной связи отрицательна, мнимая - положительна и вектор Y расположен во 2 квадранте. Для размещения вектора противосвязи Yп в 4 квадранте необходимо включить между жилами 1 и 3 контур противосвязи, содержащий конденсатор и резистор, а между жилами 1 и 4- только конденсатор, создающий вектор, параллельный мнимой оси в отрицательном направлении (рис. 6.5, е). Положение вектора Yп зависит от соотношения между R, С1 и С2.
4. Если g13> g14 и С13<С14, то вектор Y расположен в 4 квадранте и для размещения вектора противосвязи Yп во 2 квадранте необходимо включить контур противосвязи пo схеме.
На рис. 6.5 приведены векторные диаграммы, определенные на одной отдельно взятой частоте. Симметрируют же ВЧ кабели в широком диапазоне частот, поэтому необходимо знать частотную характеристику векторов комплексных связей (ХКС) - годограф.
Годограф - это кривая, соединяющая вершины векторов комплексных связей на отдельных частотах. Годограф содержит полную информацию о характере взаимного влияния между цепями, в то время как частотная характеристика защищенности (переходного затухания) характеризует только модуль электромагнитной связи.
На рис. 6.6 представлен типовой годограф комплексных связей при влиянии между цепями внутри четверки (годограф находится в первом квадранте комплексной плоскости). Для компенсации комплексной связи между жилами 1 и 4 включают контур противосвязи, состоящий из конденсатора и резистора, который создает годограф противосвязн в третьем квадранте Yп(ω). После компенсации результирующий годограф смещается к началу координат. Подбором элементов контура R и С добиваются такого размещения результирующего годографа (Y(ω)- Yп(ω)), при котором он не выходит из окружности радиусом, соответствующим нормативному значению проводимости комплексной связи (защищенности) между цепями.
6.5. Экранирование кабелей связи
Для уменьшения взаимных влияний между цепями и защиты от внешних помех широко используют экранирование кабелей связи. Для защиты от внешних злектромагнитных влияний на кабельный сердечник накладывают металлическую оболочку (экран), которая, как правило, имеет сплошную цилиндрическую конструкцию и выполняется из свинца, алюминия или стали.
Стальные оболочки ддя повышения гибкости гофрируют. В кабелях ГТС в качестве экранов широко используют алюминиевые экраны ленточного типа в виде спиральных лент или в виде трубки с продольным швом. В радиочастотных кабелях находят применение оплеточные экраны из плоских и круглых проволок.
Для защиты от взаимных влияний используют разделительные экраны, которые являются составной частью конструкции кабельного сердечника. Такие экраны разделяют цепи прямого и обратного направлений передачи и обеспечивают тем самым существенное снижение взаимных влияний между экранированными цепями.
В настоящее время находят применение симметричные кабели для цифровых систем передачи, разделительные экраны которых изготовлены из тонкой алюминиевой фольги. Такие конструкции кабелей позволяют организовать связь по однокабельной системе, которая по сравнению с двухкабельной имеет более высокие технико-экономические показатели.
На кабели связи оказывают влияние как электрические, так и магнитные поля. Однако в зависимости от режима работы источников помех может преобладать либо магнитная, либо электрическая составляющая поля. Сильные магнитные поля создаются цепями с большими токами и малыми напряжениями, а сильные электрические поля характерны для источников с большими напряжениями и малыми токами. Поэтому можно отдельно рассматривать действие магнитных и электрических полей. При этом следует отметить, что наибольшее влияние на кабели связи оказывают магнитные поля.
По принципу пействия экраны подразделяют на электростатические, магнитостатические и электромагнитные.
Электростатическое экранирование основано на замыкании электрического поля на поверхности металлического экрана и отводе электрических зарядов в землю.
Как показано на рис. 6.7, в цепь влияющего провода А включен источник ЭДС помех Е, а провод Б подвержен влиянию. Если экран не заземлен (рис. 6.7, а), то электрические силовые линии, созданные положительно заряженным проводом А, будут замыкаться на внутренней поверхности экрана и индуцировать на ней отрицательные заряды, а на внешней поверхности экрана будут индуцироваться положительные заряды. Эти заряды создадут в свою очередь электрические силовые линии, замыкающиеся на поверхности провода Б, индуцируя на нем отрицательные заряды.
В итоге никакого экранирующего действия замкнутый экран не оказывает. Чтобы полностью устранить влияние провода А на провод Б, необходимо замкнутый экран хорошо заземлить (обеспечить малое сопротивление заземления). В этом случае положительные заряды, сконцентрированные на внешней поверхности экрана; отведутся в землю и не будут оказывать влияние на провод Б (рис. 6.7, б). Аналогичный эффект экранирования будет иметь место и при влиянии внешнего электрического поля помех на провод А, помещенный внутри экрана. Эффект электростатического экранирования не зависит от материала и толщины экрана. Поэтому экран из любого металла в одинаковой степени локализует электростатическое поле помех. Электростатические экраны эффективно работают только на низких частотах. Магнитостатическое экранирование основано на замыкании магнитного поля в толще экрана из-за повышенной его магнитопроводности. Такие экраны изготавливают из материалов с большой магнитной проницаемостью. . На рис. 6.8, а провод А является источником магнитного поля, провод Б помещен в магнитный экран. Магнитные силовые линии магнитного поля помех будут в основном замыкаться в толще стенок экрана, так как он имеет малое магнитное сопротивление по сравнению с пространством внутри экрана, в котором находится провод Б. В результате влияние провода А на провод Б резко уменьшается. Экранирующее действие магнитных экранов улучшается с увеличением магнитной проницаемости µ и толщины экрана l. Магнитостатическое экранирование, как и электростатическое, эффективно лишь в диапазоне низких частот. В диапазоне высоких частот магнитостатический режим экранирования переходит в электромагнитный. Электромагнитное экранирование основано на принципах отражения электромагнитных волн от поверхности экрана и поглощения энергии в толще экрана. Электромагнитные зкраны наиболее эффективно работают на высоких частотах, при этом они защищают как от магнитного, так и от электрического мешающих полей. Электромагнитная волна с амплитудой W, падающая на экран (рис. 6.9), на границе диэлектрик-металл частично отражается, а частично проходит в зкран, затухая при этом в его толще. Достигнув второй границы металл-диэлектрик, волна вторично отражается. В результате в экранирующее пространство проникает лишь оставшаяся часть энергии Wэ. Амплитуда отраженных составляющих W01 и W02 зависит от соотношения волновых сопротивлений диэлектрика и металла. Чем 6ольше их различие, тем более интенсивно энергия мешающего поля отражается. Затухание энергии в толще самого экрана обусловлено тепловыми потерями на вихревые токи. Экранирующее действие экранов количественно оценивается коэффициентом экранирования, который для однородных экранов равен отношению электрического Еэ (магнитного Нэ) поля в рассматриваемой тачке при наличии экрана к напряженности электрического Е (магнитного H) поля в этой же точке при отсутствии экрана. Коэффициент экранирования S изменяется от 0 до 1. Идеальный экранирующий эффект характеризуется S=0. Для оценки экранирующих свойств экранов используется также затухание экранирования: Чем меньше коэффициент экранирования S и больше затухание экранирования Аэ, тем лучше кабельные цепи защищены от помех. . . 6.6. Электромагнитное экранирование
в широком диапазоне частот Электромагнитный режим работы кабельных экранов охватывает достаточно широкий диапазон частот: от 10'...10 до 10R..109 Гц. Расчет экранирующих характеристик электромагнитных экранов осуществляется по следующим формулам: теризует тепловые потери энергии мешающего поля на вихревые токи в экране. Чем выше частота и толщина экрана, тем лучше экранирование. При этом магнитные экраны (µ>> 1) имеют лучшее экранирование поглощения, чем немагнитные экраны (µ=1), так как в них более интенсивно действуют вихревые токи. Получается так, что с ростом частоты Sп уменьшается, а Ап возрастает, поэтому экранирование поглощения на высоких частотах более
эффективно, чем на низких.
связано с различием волновых сопротивлений диэлектрика и металла, из которого изготовлен экран. Чем больше различие между Zд и Zм, тем лучше экранирование отражения. При экранировании электрического и магнитного полей имеется принципиальное различие, которое обусловлено различием частотных характеристик волнового сопротивления диэлектрика (рис. 6.10).
Анализируя частотные характеристики волновых сопротивлений, можно сделать заключение о том, что Zм немагнитных экранов больше отличается от Zд, чем магнитных. Следовательно, экраны из немагнитных металлов работают на отражение лучше, чем из магнитных. При этом с ростом частоты S0 уменьшается, т. е. экранирование отражения улучшается.
Из этих графиков видно, что экранное затухание магнитного поля АэН с ростом частоты увеличивается, а экранное затухание электрического поля АэЕ вначале падает, а на частотах выше 106... 107 Гц начинает возрастать. При этом электрическое поле экранируется значительно лучше, чем магнитное, так как АэЕ > АэН Особенно это различие заметно в диапазоне низких частот. Следовательно, как и отмечается выше, в практике применения кабельных экранов как мер защиты от взаимных и внешних помех необходимо в первую очередь учитывать магнитное поле. Поэтому рассмотрим несколько подробнее характеристики экранирования магнитных и немагнитных экранов при экранировании магнитного поля. На графиках, представленных на рис. 6.12, видны три характерные частотные области. В частотной области 1 (до 3... 10 кГц) магнитный экран имеет лучшие экранирующие свойства, чем немагнитный. Работает он в этой области в магнитостатическом режиме. В частотных областях 2 и 3 оба экрана работают в электромагнитном режиме. При этом в частотной области 2 (от 3... 10 кГц до 1 МГц) лучше экранирует магнитное поле немагнитный экран по причине лучшего отражения энергии (А0>Ап), а в частотной области 3(выше 1 МГц) - магнитный экран по причине лучшего поглощения энергии (Ап>А0).
Из проведенного анализа вытекает вывод о том, что лучший экранирующий эффект имеют конструкции экранов с немагнитными и магнитными слоями. Такие экраны находят применение в реальных конструкциях кабелей связи. Например, в кабеле МКСАБп на сердечник накладывают алюминиевую оболочку (немагнитный экран) и две стальные бронеленты (магнитный экран). Алюминиевая оболочка обеспечивает хорошее отражение, а стальные бронеленты, имеющие большую магнитную проницаемость, обеспечивают хорошее поглощение энергии мешающего электромагнитного поля. Оценив эффективность работы электромагнитных экранов в целом, отметим, что магнитное поле весьма хорошо экранируется на высоких частотах и существенно хуже в области низких частот.
6.7. Защита оптических трактов от взаимных помех
Взаимные влияния между световодами в оптическом кабеле вследствие самоэкранирования направляющей системы, образуемой ОВ, весьма незначительны и носят в основном случайный характер. Эти влияния еще более ослабляются вследствие экранирующего действия защитных покрытий из полиамидных смол, фторопласта, силиконовых резин, полиэтилена и других синтетических материалов, предназначенных в основном для усиления механической прочности ОВ, их защиты от внешних воздействий, улучшения температурных характеристик параметров передачи волокон, облегчения технологии изготовления оптических кабелей и монтажа ОВ. Одновременно эти защитные оболочки, а так же раздельное размещение оптических волокон в кабеле повышают защищенность оптических трактов от взаимных помех.