Курносов Ю. В., Конотопов П. Ю
Вид материала | Документы |
СодержаниеСистемный анализ |
- Курносов Ю. В., Конотопов, 1160.74kb.
- Договор № на оказание услуг, 160.36kb.
- Курносов Владимир Анатольевич Волжск 2007 Оглавление Введение 3-5 Глава I. Юродство, 355.39kb.
- Литература по курсу «История экономики и экономических учений» Основная История мировой, 54.21kb.
- Теория и история финансовых кризисов в России 08. 00. 01 экономическая теория (экономическая, 450.88kb.
Однако, вернемся к автоматному поведению, контуру управления, информационному циклу управления и обратной связи. Что подразумевается под автоматным поведением? Под автоматным поведением понимается такое поведение, при котором некоторое изменение состояния среды функционирования (существования) объекта приводит к осуществлению им действий, направленных на адаптацию к изменившимся условиям — ситуация на входе подсистемы сбора информации приводит к осуществлению системой того или иного действия.
Автоматное поведение свойственно, например, живым организмам, способным к реализации простых рефлексов. Для таких организмов справедлив подход, представляющий подсистему управления жизнедеятельностью организма в виде некоторым образом организованной системы нервных клеток (нейронов) чувствительных к изменению условий (рецепторов, образующих подсистему сбора информации) и исполнительных (эффекторов, образующих подсистему доведения управляющих воздействий). Состояние всех рецепторов системы в некоторый момент времени в кибернетике принято называть ситуацией, а состояние всех эффекторов — действием. В этом случае можно утверждать, что роль, которую исполняет подсистема управления, сводится к преобразованию ситуации в действие.
В кибернетике принято выделять два вида обратных связей между подсистемой сбора информации, образованной совокупностью некоторым образом организованных датчиков (или рецепторов), и подсистемой доведения управляющих воздействий, представленной совокупностью исполнительных компонентов (или эффекторов). В живых организмах эти связи представлены синапсами (местами близкого размещения или контакта нервных клеток):
- положительную обратную связь, при наличии которой возбуждение рецептора вызывает возбуждение эффектора, а покой — состояние покоя;
- отрицательную обратную связь, при наличии которой возбуждение рецептора вызывает переход эффектора в состояние покоя, а покой — возбуждение.
Благодаря наличию обратной связи контур управления приобретает замкнутый вид, за счет чего появляется возможность дозирования управляющих воздействий и анализа их результатов.
Число рецепторов и эффекторов в сложных системах бывает весьма велико (а в живых организмах — и подавно), что требует эффективных механизмов обработки поступающей от них информации и управления ими. Практика исследований как в нейрофизиологии, так и в социальных и технических дисциплин указывает на то, что в этих условиях наиболее эффективными являются механизмы обработки информации и управления, построенные по иерархическому принципу. В такой системе информация о состоянии обрабатывается наиболее быстро, а разнообразие различаемых состояний для единичного рецептора или эффектора в иерархической системе сводится к минимуму. Соответственно, для каждого элемента иерархии достаточно располагать информацией, необходимой для выполнения лишь того набора элементарных операций, который входит в его компетенцию.
Наибольший интерес с точки зрения процессов управления представляет категория цели. В кибернетике под целью принято понимать то желаемое состояние, на достижение которого направлена управленческая деятельность. Для систем с примитивным автоматным поведением (не обладающих способностью к целеполаганию) в качестве цели управления рассматривается поддержание гомеостаза (функционального состояния системы, при котором благодаря действию специальных систем управления, именуемых гомеостатами, обеспечивается динамическое постоянство жизненно важных функций и параметров системы при различных изменениях внутренней и внешней среды). Следует обратить внимание на то, что гомеостаз — это не есть покой или просто постоянство, гомеостаз — это состояние, обеспечиваемое динамическим процессом. При этом наравне с термином «гомеостаз», часто пользуются и другим термином — «гомеокинез». Так, если интегральные показатели системы при отсутствии изменений внешней среды остаются постоянными, мы имеем состояние гомеостаза, а если они колеблются около некоего среднего положения, оставаясь в определенных рамках, это — состояние гомеокинеза.
В 1952 году У.Р. Эшби47 было сформулировано понятие целеполагающего гомеостата. В качестве такого целеполагающего гомеостата им рассматривался человеческий мозг, способный через субъективно идеализированную абстракцию (модель мира субъекта целеполагания) прогнозировать возможные опасности собственному существованию и принимать превентивные меры для обеспечения собственной безопасности за счет интенсификации вещественно-энергетического потока из внешней для гомеостаза среды — среды его обитания.
Наиболее распространенным вариантом построения гомеостатов в природе и техники является иерархическая организация его компонентов. Такая конфигурация вполне объяснима с учетом приведенных одним абзацем выше рассуждений. Позже американским ученым С. Биром применительно к производству было сформулировано понятие иерархического гомеостата48, применение которого позволяло упростить процессы управления предприятием, построить рациональную организационно-штатную структуру, оптимально распределить должностные обязанности, а также выполнять массу иных процедур, связанных с управлением производством.
В принципе, присмотревшись к такой модели, можно уловить черты сходства с муравейником. Более того, несколько идей, относимых к разряду социальных утопий, основывались именно на таком идеале. В качестве примера кибернетического подхода к общественному устройству могут рассматриваться конфуцианство с его кодексами, «Город Солнца» Т. Кампанеллы и представления ряда авторов социальных утопий прошлого49 и современности. Крайней формой кибернетизированного подхода к рассмотрению рациональной организации человеческого общества является так называемая «теория золотого миллиарда» — реакционная теория элитарного общества, построенная на основе неомальтузианства.
Характерно, что такой принцип устройства системы соответствует максимальной экономии расходуемых ресурсов, характеризуется высочайшей эффективностью и быстродействием, но при этом существенно возрастает уровень специализации элементов. Последствия роста специализации можно проиллюстрировать на следующем примере: простейшие живые организмы, не располагающие центральной нервной системой и обладающие малой специализацией клеток, их образующих, демонстрируют более высокую живучесть, а способность к регенерации утраченных органов у них распространена шире, нежели чем у более сложных организмов. Некоторые параллели могут быть проведены и при сопоставлении тоталитарной и демократической моделей государственного устройства, хотя здесь следует помнить, что кибернетика, как и многие другие науки, останавливается в своих абстракциях на некотором конечном уровне декомпозиции, отбрасывая своеобразие тех компонентов, которые оказываются ниже используемого уровня абстракции.
Кибернетические подходы к управлению обществом и производством на самом деле не содержат в себе ничего такого, о чем следовало бы говорить как об источнике угрозы обществу — просто любая крайность в управлении целеполагающими системами опасна и ведет либо к гипертрофированному индивидуализму или к чрезмерной централизации управления. И в том и в другом случае (хотя и по разным причинам) неминуемо происходит истончение интеллектуального слоя общества, его деградация. Однако при разумном сочетании централизованного и децентрализованного управления результаты могут быть получены весьма значительные преимущества, что отнюдь не противоречит кибернетике (техническая кибернетика наглядно продемонстрировала необходимость наличия люфтов в системах управления).
Польза люфтов в системах управления может быть продемонстрирована хотя бы на примере знакомой всем автомобилистам системы рулевого управления. На заре автомобилестроения соединение деталей в системе рулевого управления было жестким, лишенным люфтов (цепным или шестеренчатым). В результате такого конструктивного исполнения каждая выбоина на дороге (а дороги в то время были чаще всего брусчатыми) моментально отдавалась в рулевом колесе, вызывая у водителя автоматную реакцию — попытку сопротивления действию силы, вращающей колесо. Однако время задержки реакции оказывалось велико по сравнению с длительностью воздействия ударной нагрузки, и водитель прилагал компенсационное усилие уже на другом участке дороги, где направления компенсационного усилия и силы, вращающей рулевое колесо в результате следующего соударения, могли совпасть, что часто и случалось на практике. Управление автомобилем в то время требовало значительной физической силы и хороших навыков. Многие обращали внимание на то, как странно (по нынешним понятиям) вели себя на дороге старинные автомобили в кадрах кинохроники — они непрерывно совершали какие-то бессмысленные резкие зигзагообразные маневры на дороге, но мы-то знаем, в чем тут дело… Лишь в результате ряда усовершенствований (применение остроумно реализованных автоматов удержания прямолинейного направления движения за счет наличия углов развала и схождения) задача удержания рулевого колеса автомобиля существенно упростилась. Но главным здесь было изобретение рулевой трапеции, устроенной так, чтобы в ней обеспечивался люфт, позволяющий гасить незначительные удары и вибрации, возникающие при езде по дороге. Сейчас в правилах дорожного движения записано, в каких пределах должен обеспечиваться люфт в системе рулевого управления автомобиля.
Однако вернемся от проблем социальных и автомобильных к проблемам, рассматриваемым современной кибернетикой. Естественным продолжением исследований в области кибернетики стало возникновение таких теорий как теория распознавания образов, теория информации, теория искусственного интеллекта, кибернетической (математической) лингвистики и иных направлений, в основу которых заложено рассмотрение информационных процессов, связанных с управлением, целеполаганием, процессами возникновения и управления знаниями. В створе кибернетических наук зародилось весьма популярная в настоящее время технология нейросетевой обработки и анализа данных. Таким образом, мы приходим к утверждению, что на сегодня большая часть технологически реализованного аналитического инструментария базируется на принципах, сформулированных в рамках кибернетического подхода. Однако, как будет показано далее, человечество постепенно входит в эпоху, когда кибернетические подходы перестают быть единственным поставщиком технологий для аналитики — уровень развития кибернетических технологий завершает процесс создания платформы для начала внедрения технологий, основанных на теории систем и системного анализа, построения кибернетических систем высших порядков.
К числу разделов кибернетики, представляющих особый интерес для аналитики, несомненно, относится теория распознавания образов. Это направление получило развитие на самых ранних этапах развития кибернетики — без этого было невозможно решить задачи обеспечения реакции автомата на изменение ситуации (как некоторой специфической совокупности сигналов, поступающих от рецепторов). Так, уже на этом этапе теория распознавания образов, пусть пока формально, но оказалась связана с распознаванием ситуаций. Вначале распознавание было наиболее тесно связано с распознаванием графических образов в технических системах, но при наличии устойчивой тенденции к кибернетическому рассмотрению общества это не могло не привести к возникновению специфического направления — распознавания ситуаций и в сфере управления организационно-техническими и социальными системами.
Наиболее интенсивно методы распознавания образов используются на этапе, когда данные, собранные и прошедшие первичную обработку, приводятся к единому формату представления, что позволяет использовать для их отображения и анализа нормализованное метрическое пространство признаков (это означает, что в таком пространстве признаков введены метрики, обеспечивающие возможность измерения степени близости полученных результатов к неким эталонам). В этом случае близость к заданным эталонам указывает на возникновение ситуации, полностью или в некоторых деталях сходной с эталонной, по тем или иным причинам выделенной из числа прочих возможных. В настоящее время все чаще для решения таких задач используются методы, ранее использовавшиеся для распознавания изображений, однако применяемые не после отображения, а на этапе работы с внутренним представлением данных в системах автоматизированной обработки.
Как видим, кибернетические методы широко используются для анализа данных, построения моделей объектов и систем, распознавания ситуаций, синтеза организационной структуры информационно-аналитических подразделений и для многих других аналитических приложений. Ранее мы указывали, что методы кибернетических исследований тесно связаны с методологией системного анализа и границу раздела между ними определить крайне сложно. Тем не менее, в рамках нашего повествования такую границу мы проведем здесь.
СИСТЕМНЫЙ АНАЛИЗ
При объяснении феномена общности, приведшего к зарождению общей теории систем и системного анализа, можно сослаться на то, что исследователи чрезвычайно ограничены в средствах формализации и вынуждены выбирать сходный математический аппарат для обозначения природных явлений и процессов совершенно разного происхождения. Однако, это не совсем так (конечно, многое зависит от математического кругозора ученого) — дело в том, что современная математика достаточно богата разнообразными абстрактными объектами и инструментами формализации и способна предоставить исследователям все то, что может им потребоваться для представления результатов научных изысканий. Но, тем не менее, одни и те же зависимости, обратные квадрату расстояния, описывают изменение напряженности электромагнитного поля на некотором удалении от точечного носителя заряда, силу ударной волны на удалении от эпицентра взрыва, одинаковые дифференциальные уравнения описывают движение жидкостей, тока, переноса тепла в электро- и тепло- проводных средах, иначе говоря, слишком много «случайных» совпадений. Даже наоборот, по мере развития специальных разделов математики, возникших в результате развития кибернетики, информатики, теории игр, управления, аксиоматической теории принятия решений, факторного анализа, «нечеткой» математики, становится очевидным наличие объективных закономерностей, определяющих сходство многих внешне различающихся феноменов.
Использование этого знания давало гипотетическую возможность на некоторых этапах исследований, проводимых в междисциплинарных областях, абстрагироваться от тех особенностей исследуемых систем, которые были несущественны с точки зрения решаемой задачи. Преимущества, которые могло дать использование подобного подхода, были очевидны. Однако от догадки до знания дистанция достаточно велика. Предположение Л. фон Берталанфи было лишь первым шагом на пути к созданию стройной научной теории, способной принести реальную пользу при решении конкретных задач теоретических и прикладных исследований. Отсутствие единой теоретической платформы, роль которой ранее исполняла механика Ньютона, тормозило развитие науки, а потребности практической деятельности стали наталкиваться на ограничения методологического плана (в этом-то и проявляется кризис науки). Поскольку общей концепции устройства мира синтезировано так и не было, а заключения о природе всего сущего наука дать была неспособна, постоянно наталкиваясь на технологические ограничения, ученые во многих отраслях вынужденно перешли на макроуровень. Этот подход оказался весьма продуктивным — все чаще в системах различной природы стали обнаруживаться закономерности, указывавшие на наличие чего-то общего, судя по всему, вызванного общностью фундаментальных принципов организации всех систем от самого нижнего уровня агрегации до самого высшего.
По мере углубления исследований росла убежденность в том, что структурный подход к анализу систем чрезвычайно эффективен и позволяет, отказавшись от детального изучения конкретных физических механизмов реализации той или иной конструкции, успешно решать многие задачи как теоретического, так и практического плана. Установка А.А.Богданова, настаивавшего на том, что «структурные отношения могут быть обобщены до такой же степени формальной чистоты схем, как в математике отношения величин» в результате чего многие «задачи могут решаться способами, аналогичными математическим» находила все больше подтверждений. В науке начался переход от изучения динамики элементов к изучению динамики структур, где отношения были более наблюдаемы и предметны.
Однако поскольку предметные области, в которых осуществлялись исследования в рамках методологии общей теории систем, традиционно различались (именно типом элементов систем), постольку в рамках общей теории систем сформировалось несколько направлений, прижившихся в различных отраслях: в экономике, политике, военном деле, экологии, социологии, демографии, ряде разделов медицины, и многих других.
На первых этапах общая теория систем, развивавшаяся в створе философских наук, оставалась предметом отвлеченных дискуссий, но по мере ознакомления специалистов-практиков с ее методологией, преимущества новых подходов стали очевидны. Там, где возникала потребность в создании и изучении сложных систем (в том числе — организационных и организационно-технических), использование методов системного анализа приносило ощутимую пользу. Особенно ценным было то, что методы общей теории систем позволяли выявить потенциальные источники противоречий, способных привести к снижению эффективности функционирования или самопроизвольному распаду системы. В ходе работ, связанных с проектированием больших человеко-машинных систем (что на тот момент было особенно востребовано при проектировании систем военного назначения) постепенно сформировалось специфическое направление общей теории систем, получившее наименование системный анализ.
Прежде, чем продолжить разговор о системном анализе, следует определиться с терминологией. Определение любой научной дисциплине может быть дано различными способами: по цели исследования, по объекту (предмету) исследования, по методу исследования и по субъекту исследования.
Определение по цели исследования. Системный анализ — это вид целенаправленной исследовательской деятельности, осуществляемой с целью создания оптимального по форме, содержанию, а также уровню детализации и формализации представления имеющихся знаний о сложных системах, являющихся предметом интересов исследователя.
Определение по предмету исследования. Системный анализ — это отрасль научного знания, предметом изучения которой являются наиболее общие закономерности процессов возникновения (создания), существования (функционирования), распада (разрушения) сложных систем, процессов зарождения, развития и разрешения противоречий, а также закономерности синтеза целей в сложных системах, определяемые структурой, характером и динамикой связей между их компонентами.
Определение по методу исследования. Системный анализ — это вид комплексного исследования, использующего в интересах достижения цели методы структурной и функциональной декомпозиции сложных систем, опирающиеся на достижения философии, естественных и гуманитарных наук, а также математики и математической логики.
Определение по субъекту исследования. Системный анализ — это вид исследовательской деятельности, осуществляемой специалистами в области системного анализа, системотехники и системологии, применительно к некоторой сфере деятельности.
Чтобы понять сущность системного анализа, на начальном этапе лучше прибегнуть к нестрогим определениям, например, системный анализ — это: «предпроектная стадия в разработках и предмодельная стадия в научных исследованиях», «дематематизированная кибернетика», «формализованный здравый смысл», «когда сначала думают, а потом делают» и тому подобные афористичные фразы. Все эти определения тем или иным образом указывают на связь системного анализа с принятием управленческого решения — неважно в какой отрасли.
Системный анализ может рассматривать в принципе любые типы систем и объектов, представляя объект исследования в качестве системы (в этом сущность его метода), в том числе и сложной. Однако оптимизация процесса исследования не есть главная задача системного анализа,