Курносов Ю. В., Конотопов П. Ю

Вид материалаДокументы

Содержание


1.2 Естественнонаучные концепции
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   43
ЛОГИКА


В одной из своих статей28 авторитетный отечественный ученый А.А. Зенкин, известный своими работами в области логики и теории систем искусственного интеллекта, заявил: «Лет тридцать тому назад ради спортивного интереса я начал коллекционировать различные «логики», используемые в современных логико-математических трактатах. Когда их количество перешагнуло вторую сотню, стало ясно: если логику можно выбирать «по вкусу» (или даже конструировать «по потребности»), то такое понятие, как «наука», становится здесь просто неуместным».

Возможно, что в качестве предисловия к подразделу, посвященному логике, как одному из основных методологических компонентов аналитики, эта фраза покажется не слишком уместной, но такой своеобразный старт позволяет взглянуть на логику несколько шире, нежели мы привыкли. Дело в том, что современная логика чрезвычайно многообразна и очень часто логические системы строятся в соответствии с конкретными задачами исследования. Соответственно, следует разделять классическую (аристотелеву) логику и, так называемые, неклассические или нетрадиционные логики. И, прежде, чем начать оперировать формальным аппаратом логики, необходимо определиться с тем, в рамках какого именно логического аппарата будут строиться рассуждения.

Долгое время логика развивалась в рамках философской науки и рассматривалась в качестве одного из ее разделов. Лишь позже, в связи с развитием математики и естественных наук, логика приобрела относительную самостоятельность.


В современной логике — как в ее философской ветви, так и в формально-математической — наблюдается все большая ориентация на прикладные проблемы, сопряженные с конкретными отраслями информационных технологий. Множество работ посвящено вопросам представления знаний в системах искусственного интеллекта, построения систем поиска данных, поиска логического вывода и т. п. Это свидетельствует о том, что по сложности решаемых логических задач практика (в первую очередь, благодаря активизации исследований в области прикладной математики, лингвистики, информатики и теории искусственного интеллекта) наконец-то «нагнала» долгое время опережавшую потребности практики теоретическую логику. Если аристотелева логика до конца XIX — начала XX века в целом отвечала потребностям практики, то, начиная с этого периода, исследования в области логики стали приобретать специфический характер, становясь откликом на потребности практической деятельности.

Памятуя классическое деление этапов решения задач: анализ и синтез (восходящее еще к Паппу Александрийскому), попытаемся определить, что именно понимается под аналитическим методом в логике. Классический подход состоит в том, что логика рассматривает аналитический способ как способ решения «снизу вверх»: от формулы к аксиомам, а синтетический способ — как решение задачи «сверху вниз»: от аксиом к выводимой формуле. Это позволяет рассматривать классификацию логических исчислений по степени привлечения в их рамках аналитического и синтетического подходов. Соответственно, все логические системы можно условно разделить на: «аналитические» системы — системы секвенциального29 исчисления, «синтетические» — аксиоматические системы, а также «смешанные» — системы натурального вывода.

Практика решения прикладных задач в области искусственного интеллекта показала ряд преимуществ аналитических и смешанных систем логических исчислений для задач представления знаний и построения выводов. Такая тенденция в сфере разработки и создания систем искусственного интеллекта наблюдается со времени опубликования работ С.Ю. Маслова — его идеи получили свое практическое воплощение и развитие в работах отечественных ученых В.К. Финна и Д.А. Поспелова, дополнивших и развивших положения его работ. В частности, было введено понятие квази-аксиоматических систем, система аксиом в которых обладает локальной областью определения и может подвергаться коррекции без переопределения всей системы аксиом, значимых для производства вывода в рамках целостной системы искусственного интеллекта. В настоящее время это направление интенсивно разрабатывается американскими специалистами в области построения искусственного интеллекта в рамках проектов министерства обороны, направленных на создание систем поддержки информационно-аналитической работы.

Рассмотрим, какие именно практические потребности аналитики призвана решать логика. Здесь следует выделять два класса задач:
  • задачи анализа рассуждений;
  • задачи технологического обеспечения.

При решении задач анализа рассуждений логика выступает в качестве инструмента, с помощью которого устанавливается не «истина», как адекватность (т. е. соответствие) содержания рассуждений реальному миру, а факт их логической непротиворечивости (верификации рассуждений). Если построенная логическая система непротиворечива, то она для одной реальности или математической модели может быть адекватна и уже в силу этого истинна, а для некоторой другой — нет. Если же логическая система изначально противоречива, то разговора о ее адекватности чему бы то ни было (и истинности) в любом случае не может быть. Если говорить о естественнонаучных знаниях, то критерием их истинности является практика. Однако для того, чтобы логические методы могли быть применены для вывода истинных суждений о некой предметной области, она должна быть предварительно формализована и описана в виде некоторого набора суждений, поддающихся логическому анализу (эталонной модели фрагмента реальности). Методы логики могут быть также использованы для выявления противоречий в системе рассуждений и относительно этого эталона.

Задачи технологического обеспечения информационно-аналитической работы затрагивают проблемы использования логического аппарата для синтеза эталонных моделей предметной области и инструментария хранения и поиска данных. В том числе — для тех предметных отраслей, формализация в которых затруднена из-за действия комплекса ограничений объективного характера (например, естественно-языковых суждений, для которых характерны размытость границ состояний, полисемия /многозначность/ и иные явления).


К числу проблем, активно разрабатываемых в логике в настоящее время, относятся такие, как проблема построения логических систем, пригодных для решения задач формализации рассуждений на естественных языках, решения задач представления логики суждений или событий в условиях использования многозначных шкал, отображающих различную степень уверенности эксперта в достоверности факта, стадию изменения состояния между некими полярными исходами и т. п., для задач отображения развертки процесса во времени, отображения отношений не столько причинно-следственного, сколько временного плана (строгое предшествование, нестрогое предшествование и т. п.). Эти задачи, нетрадиционные для классической логики попали в центр внимания современной логики благодаря необходимости анализа больших массивов данных при моделировании рассуждений экспертов в рамках синтеза экспертных систем, систем искусственного интеллекта и иных приложений.

Как видим, направления исследований в логике продиктованы именно необходимостью построения средств, обеспечивающих возможность синтеза технологической базы для ведения информационно-аналитической работы. Классическая логика связана с формализацией строго корректных суждений, но такие суждения в практике человеческих коммуникаций и аналитической деятельности — большая редкость. Как следствие, основное внимание специалистов, решающих теоретические и прикладные задачи, связанные с технологическим обеспечением ИАР, нацелено на синтез специфических логических систем, компенсирующих специфику предметной области. Такие логические системы отвечают потребностям некоторой узкой области деятельности и неуниверсальны. К числу таких систем могут быть отнесены модальные и семантические логики30:
  • логика высказываний;
  • временная логика;
  • динамическая логика;
  • логики веры и знания;
  • логика предикатов;
  • типизированная экстенсиональная логика;
  • интенсиональная логика;
  • логика модифицируемых рассуждений и другие.

Каждая из перечисленных выше логик отвечают решению специфических задач и имеют ограниченную сферу применимости. Например, временная логика нашла широкое применение при описании процессов, развернутых во времени (классический пример — линейное программирование, описание алгоритмов и сценариев); логика веры и знания — при анализе неполных систем высказываний или высказываний потенциально противоречивых (анализ полноты системы аргументов при рассмотрении сведений о предметной области, собранных методом экспертного опроса); логика предикатов используется при формализации рассуждений и синтезе гипотез; экстенсиональная и интенсиональная логики, предложенные Р. Монтегю, широко используются при представлении естественно-языковых суждений (системы искусственного интеллекта, предназначенные для автоматического перевода) и так далее.

Интересный подход к анализу естественно-языковых рассуждений предложен нашим соотечественником Б.А. Куликом в предложенной им логике естественных рассуждений31, явное приложение которой в аналитике — анализ полноты и непротиворечивости системы аргументов для построения выводов.

Кроме того, существует обширный класс многозначных логик (отображающих суждения не на двухкомпонентное множество исходов «Истинно/Ложно», а на множество большей мощности); начало развитию этого класса было положено польским логиком Яном Лукасевичем в 1921 году. Интересно, что трехзначная логика Лукасевича была предвосхищена еще в работах таких философов как Уильям из Оккама и Георг Гегель. Благодаря дальнейшим исследованиям трехзначной логики, было введено понятие класса многозначных логик, включающего и бесконечнозначную логику, отображающую высказывания на континуум от 0 до 1. Свойства многозначных множеств позволяют использовать их при описании вероятностных процессов.

Чрезвычайно интересно для решения задач аналитики направление нечетких логик (fuzzy logic), предложенных Л. Заде. Они также применяются для решения задач, связанных с формализацией описаний процессов, носящих нечеткий, лингвистический характер. Это направление взято за основу при разработке систем поддержки информационно-аналитической работы в интересах информационно-аналитических подразделений органов государственного управления США.

Как явствует из приведенных сведений, современная логика предлагает множество инструментальных логических систем, комбинирование которых позволяет отчасти решать сложные проблемы, сопряженные с информационно-аналитической работой. Это требует от аналитиков (особенно тех, кто по долгу службы выступает в роли постановщика задач перед разработчиками специализированных инструментальных средств поддержки ИАР) хотя бы минимальных познаний в этой сфере, обеспечивающих ему возможность оценить применимость тех или иных методов для решения конкретных задач.


СЕМИОТИКА


Семиотика как наука зародилась на стыке двух научных дисциплин — логики и лингвистики. Родоначальником этой науки принято считать американского логика и философа Ч. Пирса, основателя прагматизма. Попытки очистить язык науки от ненаучных терминов, характерные для конца XIX века, не могли не отразиться на его деятельности. Работы Пирса по теории значения стимулировали развитие и становление семиотики. Идеи Пирса в последствии были развиты Ч. Моррисом и сформулированы в работе «Основы теории знаков» (1938 г.). Дальнейшее развитие семиотики привело к проникновению ее методов в различные сферы научного знания, где существовала потребность в формализации и систематизации тезауруса.

Семиотика — это наука о наиболее общих закономерностях построения и функционирования знаковых систем, в качестве своих разделов рассматривающая: синтактику, семантику и прагматику. Трактовка понятия «знаковая система» для приверженцев различных течений в семиотике существенно варьируется: от формальных знаковых систем, ориентированных на представление научных теорий, до литературной стилистики и моды, оперирующих знаками-символами и жестами.

Может быть дано и иное определение семиотики. Это определение семиотики дано относительно методов, используемых семиотикой, а именно: Семиотика — это приложение логико-лингвистических методов при исследовании различных объектов и систем, в том числе — и отличных от знаков в традиционном представлении. То есть, семиотика — это совокупность методов рассмотрения сущностей и отношений некоторой предметной области как системы, функционирующей подобно языку.

Здесь часто используется такое понятие, как знаковая ситуация, то есть такая ситуация, в которой некоторая сущность, процесс или их проявление может рассматриваться в качестве знака. При подобном подходе в качестве знаков могут рассматриваться объекты, их признаки, проявляющиеся как в функционировании объектов, так в их стационарном состоянии. В этом случае текст, как совокупность знаков любого рода, мыслится как иерархия уровней, где формальные (структурные) компоненты служат для передачи значения, выявление которого — задача аналитика.


Рассмотрим область компетенции разделов семиотики.

Синтактика — это раздел семиотики, изучающий те аспекты построения и функционирования знаковых систем, которые связаны с представлением формально корректных высказываний в рамках некоторой знаковой системы. Синтактика описывает структуру знаковых систем, правила сочетания, начертания, синтеза новых знаков, требования к их различимости — в ходе изучения знаковых систем синтактика не затрагивает смысловыражающих функций знаков. Предмет изучения синтактики — знак, совокупность знаков, алгоритмы синтеза и анализа формально-корректных цепочек знаков.

Семантика- это раздел семиотики, изучающий те аспекты построения и функционирования знаковых систем, которые связаны с передачей смысла. Семантика описывает связь между знаками и теми сущностями, которые они выражают, то есть рассматривает смысловыражающие функции знаков.

Прагматика — это раздел семиотики, рассматривающий отношение истинности и полезности высказываний с точки зрения говорящего или слушающего (пишущего или читающего). Иначе говоря, если семантика рассматривает проекцию знаков на некоторую модель мира, то прагматика рассматривает соотношение некоторой модели мира, выраженной средствами знаковой системы, к реальному миру, который ей представлен, и источнику/потребителю этих высказываний.

Методы семиотики широко применяются в других науках для разработки и анализа правильности построения их формально-описательного аппарата. В частности, семиотика оказала большое влияние на логику, математическую лингвистику и теорию искусственных языков, лингвистическую семантику, информатику, кибернетику, теорию систем искусственного интеллекта, общую теорию систем и системный анализ, а также многие другие отрасли науки. В семиотике широко используются методы декомпозиции знаковых систем на синтактическую, семантическую и прагматическую страты (слои, уровни), что позволяет выделить в них компоненты более высокого уровня абстракции (метакомпоненты), образующие аксиоматику знаковой системы (классическим примером метаязыкового компонента может служить грамматика русского языка, для описания которой может быть синтезирован лаконичный формальный язык). Выделение метакомпонентов обеспечивает возможность более строгого анализа тех отношений, которые существуют между знаком, моделью и реальностью. А систематическое применение этого метода удерживает исследователя, манипулирующего знаковыми системами для выражения различных сущностей и отношений предметной области, в рамках системы строгих, формальных процедур, что крайне ценно для дальнейшего использования полученных результатов при синтезе средств автоматизации.

Так, применение семиотических методов в лингвистике позволило специалистам в области лингвистической семантики перейти от примитивных описательных методов раскрытия содержания терминов к системному представлению тезаурусов, способных учитывать в том числе и контекст употребления терминов (по существу — знаков). Отчасти, эти достижения были использованы для создания систем автоматического перевода. Правда, чувствительность к контексту для большинства непрофессиональных систем не характерна и обеспечивается она лишь в профессиональных системах, на рынок либо не поставляемых, либо стоящих значительно дороже, нежели «настольная» система, ограничивающаяся лишь синтактическим уровнем рассмотрения знаковых систем.

Длительное сопротивление и неприятие методологии семиотических исследований специалистами отечественной лингвистической школы привело к тому, что в российской лингвистике произошло более резкое разграничение между традиционной (описательной) и семиотической лингвистикой, сказавшееся на замедленном развитии технологий информационно-аналитической работы, традиционно связанных с анализом естественно-языковых конструкций. Специалисты в области технических наук интенсивно работали в области математической лингвистики, теории искусственных языков, не будучи при этом лингвистами по образованию — следствием стало возникновение терминологической несовместимости, а также ориентация на разбор англоязычных примеров, рассмотрению которых уделялось внимание в переводных изданиях.

Однако отечественная семиотическая школа отнюдь не является калькой с зарубежных образцов: начиная с шестидесятых годов, в СССР семиотика заняла достойное место в ряду других, официально признанных, наук. В крупнейших университетских и академических центрах были созданы научные семинары, в рамках которых велись теоретические и прикладные исследования в области семиотики, постепенно сформировались научные школы со своими традициями. В период 1960 — 1980-х годов методология семиотических исследований прочно вошла в методологический инструментарий отечественной науки, была востребована специалистами в области искусственного интеллекта и моделирования сложных систем, системного анализа и общественных наук, завоевала признание у лингвистов и искусствоведов. В эти годы были созданы специализированные издания, посвященные проблемам семиотики32. Опыт российской прикладной семиотики востребован за рубежом.


Чем семиотические подходы близки аналитике? Что дает их использование аналитику?

Семиотический подход в аналитике находит массу приложений. Одним из наиболее очевидных приложений семиотики может быть ее использование в сочетании с методами лингвистической семантики для анализа текстовых массивов в их традиционном понимании. Однако, в той же мере семиотический подход может быть применен и к анализу ситуаций, где статус знака присваивается объективным признакам тех или иных ситуаций, процессов, объектов — такая трактовка позволяет рассматривать пространство признаков в качестве алфавита ситуационного языка, а допустимые комбинации знаков в качестве текстов, порождаемых в базисе такого своеобразного алфавита. В качестве интерпретанты (значения) высказываний такого языка может рассматриваться описание события, объекта, поставленного в соответствие допустимому высказыванию в результате апостериорного анализа. Соответственно, те или иные ситуации (исходы процессов) могут быть кратко описаны на таком языке и использоваться для последующего их распознавания.

Кроме того, при анализе текстов в традиционном их понимании может быть использовано специфическое дополнение традиционной семиотической триады неким промежуточным компонентом, соответствующим субъективной модели интерпретации знаков (и текстов, из них порождаемых), характерной для некоторого индивида или группы (например, приверженцев некоторой научной школы, религии, идеологической или мировоззренческой системы). Привнесение в иерархию слоев рассмотрения текста такого компонента (слоя) могло бы способствовать решению задачи приведения текстов к нормализованному тезаурусу, что весьма важно при компьютеризированной обработке текстовых массивов.


1.2 ЕСТЕСТВЕННОНАУЧНЫЕ КОНЦЕПЦИИ


Общеизвестным является тот факт, что на протяжении обозримой истории человечества крупные естественнонаучные открытия не единожды революционизирующе влияли на общественные процессы, коренным образом изменяя мировоззрение людей. Следом за такими крупными мировоззренческими прорывами серьезные изменения происходили в идеологической, политической, экономической и социальной сфере.

В качестве примеров таких открытий принято приводить ссылку на открытие Н. Коперника, приведшее к замене геоцентрической модели мира на гелиоцентрическую, вступившую в противоречие с христианской космогонией. После осознания последствий этого открытия информация о нем была закрыта (декрет инквизиции от 1616 г.), а книги, посвященные этой теории, оставались запрещенными вплоть до 1828 года. Аналогичным по масштабам мировоззренческих перемен открытием стала механика И. Ньютона, способная объяснять и описывать подавляющее большинство наблюдаемых физических явлений. Механика Ньютона оставила еще меньше места для «божьего промысла» и спровоцировала бурное развитие физикалистских концепций, легших в основу последующих преобразований в экономике и общественной жизни. К числу таких открытий относят также эволюционную теорию Ч. Дарвина, теорию относительности А. Эйнштейна, хотя их последствия были менее чувствительны для общества. Тем не менее, эти открытия обусловили значимые процессы в науке, а отклик научной деятельности А. Эйнштейна, Э. Ферми догнал человечество в августе 1945 года, когда японские города Хиросима и Нагасаки поверглись атомной бомбардировке, а человечество было вынуждено решать проблему сдерживания гонки ядерных вооружений.

На рубеже XIX — XX веков физики первыми столкнулись с неспособностью механики Ньютона разрешить все проблемы и противоречия, а принципы детерминизма (однозначности и непреложности действия причинно-следственных отношений) и редукционизма (сведения целого к совокупности частей) зачастую противоречат реально наблюдаемым процессам. По мере увеличения степени дробления (декомпозиции) объектов и процессов на компоненты происходило лавинообразное нарастание сложности уравнений, описывающих их взаимодействие, но точность научных предсказаний не росла. В то же время, перед наукой ставились все более масштабные задачи, для решения которых она не располагала рецептами, — анализ биологических, экологических, экономических и социальных систем средствами детерминистской науки оказался невозможен. Началось постепенное