Курс лекций Составил: к т. н., доцент Тихонов А. И. 2002г

Вид материалаКурс лекций

Содержание


Системность в природе
2.1. Механистический и системный подходы в науке
2.2. Свойства сложных систем
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   17
Лекция 2.

Системность в природе

Цель: современный подход к пониманию феномена жизни

 

Без понимания сути феномена жизни нам не понять причин противостояния человека и природы, то есть не найти истоков экологического кризиса, а значит, не уйти от катастрофы, грозящей не только человечеству, но и жизни в целом на планете Земля. Много слов говорится о том, что человек должен жить в гармонии с природой. Но что это значит - жить в гармонии? Современный человек уже не похож на своих предков, которые жили по принципам веры, его не соблазнишь красивыми призывами, он требует доказательств и обоснований.

Действительно, зачем нам природа? Мы превратим Землю в пустыню, но в замен украсим ее изысканными архитектурными сооружениями. А уж если совсем станет невмоготу от перенаселенности, то мы начнем осваивать космос, неся ему блага земной цивилизации. А если космос нас не пустит? Много ли мы знаем о нем? Да и сможет ли человек длительно существовать в условиях космических станций и пресловутых "городов под куполом", на которые возлагается сегодня так много надежд? Ведь недаром же один из законов экологии гласит: «Любые попытки человечества решить свои проблемы в одиночку, без сохранения всего разнообразия жизни даже самыми современными и фантастическими средствами, однозначно не состоятельны.»

Современный человек требует доказательств, только в этом случае он в состоянии изменить свое отношение к природе. Доказательства же эти можно получить только осознав суть феномена жизни. Кто мы? Откуда мы? В чем наше предназначение? Современная наука только начинает приближаться к пониманию этих вопросов. И ответы на них, судя по всему, лежат на пути развития системного подхода к пониманию явлений природы.

 

2.1. Механистический и системный подходы в науке

 

Давно подмечено, что к пониманию сути явлений можно идти двумя путями: редукционистским и холистский. Редукционизм предполагает необходимость разложения явления на составляющие его детали, механизмы и прочие частности. Считается, что, зная механизмы данного явления, мы можем судить о явлении в целом, а значит, прогнозировать его, воспроизводить и использовать в практике. Холизм исходит из наличия факта существования самого явления как некой целостности, не вдаваясь в вопросы о механизмах его реализации. Зная особенности этой целостности, можно прогнозировать свойства элементов, из которой она состоит.

В частности в физике, можно выделить два класса законов природы: дифференциальные (например, второй закон Ньютона, уравнения Максвелла и т.п.) и интегральные (например, законы сохранения энергии, импульса и т.п.). В экологии также прослеживаются две тенденции к изучению явлений: популяционный, рассматривающий природу как совокупность взаимодействующих друг с другом популяций различных видов растений и животных, и экосистемный, исходящий из факта целостности и единства экосистемы, как некоего слаженного организма. И в этом плане, например, нет принципиальных отличий между многоклеточным организмом, как четко упорядоченной системой одноклеточных существ, и социальным организмом, то есть системой многоклеточных существ. Именно на понимании природы как единого организма построен данный курс экологии.

Впервые достаточно последовательно и продуманно редукционистский подход использовал в научной деятельности Исаак Ньютон, и тот достаточно хорошо себя оправдал. Всеми достижениями современной цивилизации мы обязаны именно редукционистскому подходу. Этому способствует ряд его достоинств, основанных на понятии моделирования.

Построению любой модели предшествует процесс изучения реального объекта - оригинала. В результате мы выявляем его наиболее существенные стороны. Этот процесс называется анализом. Затем мы воспроизводим выявленные стороны оригинала в модели, после чего модель оказывается подобной оригиналу с точностью до отсеенных несущественных деталей. Этот процесс называется синтез.

Изучая реальное явление, мы не можем учесть всех связей, поэтому выделяем только наиболее существенные его стороны, не учитывая второстепенных. Поэтому модель всегда отражает процессы, протекающие в оригинале, лишь с определенной степенью точности. Это разгружает модель от несущественных деталей, позволяя добиться четкого и ясного понимания некоторых конкретных механизмов реальных явлений.

В то же время в модели не находят отражение такие стороны явлений, которые человек либо посчитал несущественными, либо упустил из внимания. Поэтому моделирование никогда не дает абсолютно точного результата. Всегда есть вероятность существенной ошибки. И тем не менее достигнутая точность оказывалась, как правило, достаточной для технической реализации полученных знаний.

Успех редукционизма породил в науке так называемый механистический подход к пониманию явлений природы, в основе которого лежат четыре его наиболее основополагающих принципа:

1) редукционизм - первопричины всех явлений лежат в поведении элементов, из которых построено явление; знание законов микромира определяет уровень наших знаний макроявлений;

2) экспериментальность - все можно измерить (дать количественную оценку), неизмеряемым сущностям нет места в науке;

3) повторяемость - научным считается только такой результат, который может быть повторен в других лабораториях и прочих научных подразделениях;

4) антителеологичность - все, что кажется целенаправленным, можно объяснить действием естественных "слепых" законов природы.

Благодаря своим успехам в исследовании вещественно-энергетических качеств природы механистический подход прочно утвердился в психологии не только ученых, но и людей, далеких от науки. Однако сложившиеся стереотипы мышления до сих пор не позволяют сдвинуться существенно в понимании так называемых "сложных систем", к числу которых, в частности, относятся все биосистемы, поведение которых не удается объяснить в рамках механистического подхода.

Особенность сложных систем - существенная взаимосвязь их свойств. Поэтому однофакторные эксперименты над сложными системами не эффективны, а многофакторные не позволяют выявить простых законов, которым бы подчинялись сложные системы, и которые абсолютизирует механистический подход. Многие свойства сложных систем оказываются понятными только при рассмотрении систем как единого целого, которое, в принципе, невозможно разложить на составляющие (попробуйте, например, разложить на составляющие свое "Я").

И тем не менее надежды ученых всего мира понять феномен жизни исходя из принципов редукционизма живы и по сей день. Поэтому мы пытаемся досконально изучить строение тел живых организмов, строение клеток, из которых они построены, строение молекул и т.п. Мы уже добились впечатляющих успехов. Мы знаем, какие участки мозга управляют различными подсистемами организма. Умеем вызывать у подопытных животных чувство наслаждения или раздражения, возбуждая определенные центры мозга. Но до сих пор от понимания ускользает природа целесообразности, в соответствии с которой происходит организация взаимодействия всех подсистем организма, и не только организма, но и природы в целом. И уж совсем за рамками понимания остаются феномены идеальных образов, творимых человеком для понимания мира и управления своим организмом.

Оказывается, что попытки понять мир только исходя из принципов редукционизма изначально несостоятельны.

Еще в древности был сформулирован принцип единства Вселенной: все явления Вселенной находятся в тесной и неразрывной взаимосвязи. То есть любое явление, любое изменение "сигнализирует" о себе во все "уголки" Вселенной. Современная наука с этим полностью согласна. Например, одной из моделей электрона является "облако вероятностей", то есть нечто, "размазанное" по всей Вселенной, что позволяет в принципе обнаружить данную частицу в любой сколь угодно далекой точке, но с разной вероятностью. Вся Вселенная погружена в это облако и любое явление воздействует на него. Свойство заполнять собой всю Вселенную можно распространить на любое явление природы, которое оказывается связанным с другими явлениями бесконечным количеством связей. Если мы не учтем все связи, то не получим полного знания о данном явлении, а значит, заранее обречены на непонимание, ошибку в своих рассуждениях.

Но рассудок не в состоянии вместить в себя всю бесконечность многообразия связей данного явления, поэтому изначально предполагает наличие ошибки. В основе этой ошибки лежит склонность нашего рассудка к точности и непротиворечивости знаний. Именно эта идея заложена в самом фундаменте механистического подхода.

Но, как оказалось, попытки понять мир, опираясь на непротиворечивые системы знаний, противоречат самим законам логики. Впервые формально точно это было показано К. Геделем. В 1931 году он на примере арифметики как одной из точных систем знаний дал доказательство так называемых "теорем о неполноте":

1) если арифметическая формальная система непротиворечива, то она неполна;

2) если арифметическая формальная система непротиворечива, то не существует доказательства ее непротиворечивости, проведенного средствами, формализуемыми в этой системе.

То есть попытки построения любой полной и одновременно точной и непротиворечивой системы знаний неразрывно связаны с появлением предложений, и утверждение, и отрицание которых в равной степени формально выводимо в этой системе, а именно: некоторое предложение А формально доказуемо тогда и только тогда, когда доказуемо и его формальное отрицание не-А. Данное противоречие может быть разрешено только со стороны некоторой метаобласти (надсистемы) по отношению к данной системе. В качестве такой метаобласти, то есть в качестве беспристрастного судьи, обычно выбирается природа. Человек ставит эксперимент, и сама природа, как ему кажется, однозначно определяет, какое из предложений - А или не-А - является истинным. Такое предложение затем вносится в данную систему знаний в качестве аксиомы, закона природы, то есть без доказательства, как данность.

Как оказалось, подобные противоречивые формулы возникают всякий раз, когда мы пытаемся сформулировать в рамках данной теории какое-то глобальное обобщение, то есть придать данной системе знаний полноту, выраженную в глобальной формуле, из которой можно вывести любое частное знание. Наиболее простой и распространенный пример - парадокс лжеца: "все, сказанное мною, есть ложь" (если я действительно такой лжец, то по крайней мере в этой фразе я говорю правду, но, значит, не все, сказанное мною, есть ложь, попытка обобщения приводит к отрицанию исходной аксиомы "я лжец"). Поэтому, идя путем точных знаний, мы обречены на их бесконечную множественность, не дающую нам право сделать глобальное обобщение, чтобы одной стройной формулой или теорией объяснить мир или хотя бы одно из явлений этого мира. Но бесконечность это слишком много, рассудок не в состоянии познать мир без обобщений. Поэтому мы должны смириться с тем, что природа изначально противоречива. Но, может быть, довериться эксперименту, который расставит все по своим местам и снимет противоречие?

Как оказалось, природа также не может выступать в роли беспристрастного судьи. Так, одна группа экспериментов может однозначно свидетельствовать в пользу волновой природы света, другая же - в пользу корпускулярной. Но две эти теории взаимно исключают друг друга, как А и не-А. Похоже, что противоречивость лежит в самой основе мироздания.

Впервые к этому выводу пришла квантовая теория, когда один из ее основателей, Н. Бор, сформулировал так называемый "принцип дополнительности", который говорит о том, что понять явление можно только применив для этого взаимоисключающие классы понятий, которые могут использоваться обособленно в зависимости от конкретных условий, но только взятые вместе дают полное знание о данном явлении. Примером применения данного принципа является признание двойственной корпускулярно-волновой природы микрочастиц.

Таким образом, в понимании любого явления мы можем выявить по крайней мере две абсолютно отрицающие друг друга точки зрения, каждая из которых будет по-своему верна (будет иметь своих убежденных сторонников), но в отдельности они будут отражать только часть истины. И только в компромиссе между обеими точками зрения лежит полное понимание сути явления. Здесь наука вплотную столкнулась с давней философской концепцией дуальности и противоречивости мира (инь и ян).

Распространение принципа дополнительности и квантованности на категории пространства и времени позволили сформулировать вывод о том, что на субквантовом уровне весь мир существует как "неделимая единица" (Д. Бом). То есть стоит выйти за определенные достаточно малые пространственно-временные размеры, как мир теряет свойство множественности и разделенности на относительно обособленные элементы (тела, объекты и т.п.) и предстает как нечто физически неделимое, сплошное, как целое, единица, монада.

Фактически о мире нельзя утверждать ни то, что он есть нечто множественное, ни то, что он есть только единое (принцип дополнительности). Его множественная структура несомненна на уровне макромира, но по мере углубления в микромир все более обнаруживается относительность выделенности и самостоятельности элементов мира, пока наконец не исчезает всякое различие на субквантовом уровне (при приближении к планковской длине порядка 10-32 м, меньше этой длины в природе не существует, так как в этих масштабах само понятие пространства теряет смысл), где обнаруживается противоположная и дополнительная сторона мира, как "неделимого целого". Судя по всему эта же сторона мира выходит на первый план, когда мы пытаемся охватить единым пониманием и структуры мегамира, в частности Вселенную в целом.

Это значит, что наряду с очевидной для нас стороной мира, как нечто множественного, то есть некоторого пространственно-временного континуума, в который погружен материальный мир, состоящий из множества вещей, объектов, явлений и т.п., следует ожидать проявления в нем таких особенностей, для которых понятие множественности абсолютно неприменимо. То есть можно ожидать наличие таких систем отсчета, в которых весь мир представляется как единое и органичное целое. В этом и состоит основа холистического подхода к пониманию мира.

Древние знали об этом. Так в гимнах Ригведы говорится: "едино то, что стало всем". К счастью, в настоящее время наметился позитивный сдвиг в направлении преодоления высокомерного представления о безусловном превосходстве научного знания над древним эмпирическим, которому было свойственно осознание целостности природы.

Можно бесконечно спорить о том, является ли Вселенная единым живым организмом, обладающим всеми качествами, присущими всем живым существам (в частности и личностными качествами, вплоть до индивидуальности и разумности), или же Вселенная является удачно организованной совокупностью физических явлений. Обе эти стороны имеют массу подтверждений, о чем свидетельствует огромное количество сторонников той и другой точек зрения. Поэтому согласно принципу дополнительности обе эти стороны, вероятно, присутствуют в реальности, но ни одна из них в отдельности не отражает всей полноты мироздания.

В науке холистский путь к пониманию сути явлений нашел воплощение совсем недавно, когда были сформулированы принципы так называемого системного подхода, дополняющие собой принципы механистического подхода. Системный подход является новым этапом в развитии методов познания. Его основное положение - природу можно понять только как систему, противоречивую в самой себе. А это значит, что любое однозначное понимание явлений природы, любое утверждение, каким бы убедительным оно не казалось, отражает лишь одну точку зрения и совершенно неприемлемо в каких-то других специфических условиях. Любая монополия на истину всегда ущербна и ведет к неполноте данной системы знаний, а в перспективе - к заблуждению.

Именно в этом состоит характерная особенность современного человечества. Одним из наиболее уважаемых нами качеств человека является последовательность, приверженность определенным принципам. Это делает человека предсказуемым и более удобным в общении. Поэтому несмотря на разнообразие мнений мировоззрение каждого отдельного человека тяготеет, как правило, к однозначности и непротиворечивости. Но природа изначально противоречива, поэтому любое однозначное мировоззрение далеко от истины.

Если бы в структурах организмов живых существ была заложена противоречивость мира во всей ее полноте, то, возможно, они не смогли бы нормально функционировать, потому что в организме все должно быть тесно и однозначно взаимосвязано. Излишняя случайность и неоднозначность губительны для физиологии живого организма. Тем и отличается живой мир от неживого, что он асимметричен. В нем одна сторона мира преобладает над другой. Природа по-своему сгладила это несовершенство жизни, она "изобрела" видовое разнообразие. Каждый отдельный организм неспособен нести в себе всю полноту истины, но чем разнообразнее формы отдельных организмов, тем ближе живой мир к совершенству. Только природа в целом способна приблизиться к совершенству, каждый отдельный организм вынужден смириться со своим несовершенством.

На уровне конкретного вида ущербность живых организмов существенно компенсируется двуполостью. Только благодаря "изобретению" двуполости природа смогла создать устойчивые сложные организмы. Каждое из существ двуполой пары, например мужчина и женщина, по-своему однозначны и предсказуемы, но они абсолютно противоположны друг другу и взаимодополняют друг друга не только по строению тела, но и по своим функциям в природе и обществе и по своему отношению к миру. Образно это можно представить в виде двух векторов В1 и В2, ортогональных друг к другу (рис.4), а потому их проекции друг на друга (понимание, подобие) равны нулю. Поэтому так типичны семейные неурядицы, вызванные абсолютной противоположностью и взаимным непониманием супругов. Но именно в этом сила семьи, так как семья способна вместить противоречивость мира.



Рис.4

Любое внешнее природное явление Х (явление само по себе, как оно есть, вещь в себе, ноумен, полная истина) дает свои проекции на менталитет мужчины (X1) и женщины (X2). Каждый из них воспринимает свою составляющую полной истины. В зависимости от соотношения проекций, то есть в зависимости от того, как ориентирован вектор Х к ортогональному базису семьи, один из супругов более уверен в правоте своей оценки, другой менее уверен. В результате рождается компромисс, который позволяет сделать семье единственно правильный шаг, на который не способен однозначно мыслящий одиночка, который будет видеть всегда только свою составляющую полной истины и, всегда идя в одном направлении, он обязательно придет к ошибке, возможно, даже к собственной гибели. Потому что полная истина динамична, вектор Х находится в постоянном движении, и нужно всегда уметь оценить его положение. Иногда кто-нибудь, чей мировоззренческий вектор Вх на время совпал по направлению с вектором полной истины Х, имеет счастье обладать всей полнотой истины, но проходит время, истина поворачивается другой стороной, а мировоззрение остается тем же, и человек теряет право быть выразителем истины. Поэтому в живом мире существует двуполость, поэтому люди живут семьями. Любые попытки переубедить или даже сломать своего оппонента (в данном случае супруга) чреваты катастрофой (скандалом, разрушением семьи). Сила семьи в ее внутренней противоречивости, что позволяет приблизиться к полноте истины в жизни данной семьи, что защитит ее от разного рода фатальных ошибок. Если удается сломать своего оппонента (семья тирана), то семья теряет эту защиту и выходит на тернистый путь падений и неурядиц.

В условиях многообразия мнений (многомерный базис) цивилизация в целом, в принципе, может обладать достаточной полнотой истины. Однако в современной цивилизации наметился явный крен в сторону однополярности мира, где на первый план выходит идеология материального обогащения. При этом вторая, духовная сторона человеческого бытия, которой изначальна чужда логика обогащения, все больше "материализуется" и приобретает прагматический оттенок. Поэтому наша цивилизация в целом все ближе к пропасти. Выход из этой порочной ситуации, на мой взгляд, состоит в выработке новых принципов, которые могли бы быть положены в основу новых мировоззренческих платформ каждого отдельного индивидуума, которые несли бы в себе внутреннюю противоречивость как особый стержень нового мировоззрения. Именно в этом я вижу основную цель развития системного подхода в науке.

Слово "система" в переводе с греческого означает "целое, составленное из частей". В общепринятом смысле под системой понимают совокупность явлений, находящихся в определенных отношениях и связях между собой и образующих определенную целостность.

Оказывается, что в свойствах и поведении сложных систем независимо от их природы прослеживаются четкие аналогии. В конце сороковых годов Берталанфи предложил программу построения "Общей теории систем" (ОТС). Эта цель пока не достигнута. Но уже сейчас разработаны принципы системного подхода к анализу всевозможных явлений. В частности эти принципы легли в основу системной динамики, разрабатывающей и исследующей модели сложных систем. Именно на основе системной динамики в настоящее время ведется поиск новой научной парадигмы (платформы), которая позволила бы сформулировать законы, общие как для неживой, так и для живой природы.

 

2.2. Свойства сложных систем

 

Наиболее общей системной закономерностью является закон подобия части и целого: часть является миниатюрной копией целого, а потому все части одного уровня иерархии систем похожи друг на друга.

Этот закон известен из глубины веков. Так еще основатель тайного (герметического) учения (магии) Гермес Трисмегист сформулировал основы любого знания в форме "Изумрудной скрижали", которая гласит: "Истинно. Несомненно. Действительно. То, что находится внизу, подобно находящемуся наверху, и обратно, то, что находится наверху, подобно находящемуся внизу, ради выполнения чуда единства. И как все вещи были и произошли от одного, точно также все вещи начались в этой единственной вещи, посредством применения".

В Библии написано: "И сказал Бог: сотворим человека по образу Нашему и подобию Нашему" [Быт. 1:26]. Античные мудрецы говорили, что "микрокосм есть отражение макрокосма". Говоря современным языком, человек как "маленькая Вселенная" голограммно несет в себе всю "маточную" универсальность и полноту "большой Вселенной".

"Познай себя" - написано на развалинах Дельфийского храма. Человек может познать мир, изучая окружающую его реальность (путь науки). По мнению древних философов, на этом пути он не сможет преодолеть следствие дуальности мира и неизбежно столкнется с ограниченностью, самообманом, иллюзией (лила, майя). Они считали, что только идя в противоположном направлении, вглубь своего "Я", можно познать истину в ее полноте и целостности. Человек создан по образу и подобию Божию, а значит, в нем сосредоточена информация о всей Вселенной и познать Вселенную можно только познавая самого себя. На этом, на мой взгляд, основан мистический опыт практически всех религий (нирвана, самадхи, благодать Святого Духа).

Для биосистем в формулировке Мюллера и Геккеля закон подобия части и целого известен как биогенетический закон: онтогенез (индивидуальное развитие особи) повторяет филогенез (историческое развитие вида). Ярким подтверждением данного закона является эмбриогенез: развитие эмбриона повторяет формы, через которые данный вид прошел в процессе своей эволюции. Для человека этот закон можно, вероятно, дополнить: ноогенез (формирование мышления) каждого человека повторяет антропогенез, то есть исторический процесс формирования мышления и мыслительного аппарата всего человечества (человека-разумного). Если учесть, что фазе эмбриогенеза, как этапу формирования многоклеточного существа, предшествует формирование одноклеточного существа (яйцеклетки), можно предположить, что формирование человека повторяет весь ход эволюции Вселенной (по крайней мере, начиная с синтеза биомолекул).

В более общей формулировке этот закон читается как системогенетический закон (Н.Ф. Реймерс): природные (а возможно, и все) системы в индивидуальном развитии повторяют в сокращенной и нередко в закономерно измененной и обобщенной форме эволюционный путь развития данного вида систем. Этому закону подчиняются, например, минералогические процессы, которые в короткие интервалы времени как бы повторяют (в измененном виде, со своими "акцентами") общую историю геологического развития Земли (геогенетический закон Д.В. Рундквиста).

Именно системогенетический закон рождает, как следствие, закон последовательности прохождения фаз развития: фазы развития природной системы могут следовать лишь в эволюционно и функционально закрепленном порядке, обычно от относительно простого к сложному, как правило, без выпадения промежуточных этапов, но, возможно, с очень быстрым их прохождением или эволюционно закрепленным отсутствием. Насильно убрать какую-то из фаз развития практически невозможно. Поэтому когда-то на стадии эмбриона у меня были жабры, которые достаточно быстро атрофировались. Они мне не нужны, но выбросить этот этап из эмбриогенеза невозможно.

Вообще, если какая-то часть (подсистема) не подобна системе в целом, то она входит в дисгармонию с другими подсистемами и с системой в целом. Такое состояние является неустойчивым, и поэтому такая подсистема либо изменяется и входит в гармонию с целостностью (адаптируется), либо разрушается. Длительно и устойчиво существуют только системы, несущие в себе подобие с метасистемами, в состав которых они входят. Именно это состояние несет в себе гармонию.

Под гармонией понимается наиболее оптимальное сочетание противоречивых сторон в едином целом. По определению одного из пифагорейцев, Филолая, гармония есть "согласие разногласного". Это такое сосуществование нескольких подсистем в рамках единого целого, при котором достигается минимальное количество противоречий (конфликтов, противостояний, напряжений). В физике подобное состояние называется энергетически наиболее выгодным. Это состояние с наименьшей потенциальной энергией взаимодействия подсистем. В экологии это состояние с наименьшим количеством конкурентных отношений (как это ни парадоксально, конкуренция - это довольно редкое явление в природе; оно характерно лишь для некоторых довольно кратковременных промежутков времени, когда в экосистеме возникает какое-либо возмущение, например, появление нового вида животных, как это было с кроликами в Австралии; это всегда вызывает переходные процессы, направленные на уменьшение конкуренции; при этом какие-то виды должны уступить другим, то есть либо измениться и занять другую экологическую нишу, либо уйти из данной экосистемы, либо погибнуть; виды, занимающие разные экологические ниши практически не конкурируют).

В состоянии гармонии заложена изначальная противоречивость мира. Многочисленные исследования показывают, что состояние гармонии достигается, когда количество предсказуемого (подчинение системным законам) в поведении элементов системы и непредсказуемого (свободы выбора) соотносятся друг с другом в "золотой пропорции" ( = 0,618). Вообще "золотая пропорция" это есть такое деление единого целого на две части, при котором меньшая часть (ассоциированная со свободой выбора) относится к большей (ассоциированной с системными законами) так же, как большая часть относится к целому. Именно в меньшей части в полной мере сохраняется подобие с целым, то есть она в свою очередь может быть поделена на аналогичные составляющие свободы и закономерности.



Рис.5

Это можно проиллюстрировать на примере деления прямоугольника (рис.5), стороны которого соотносятся в золотой пропорции, то есть AD/AB = .

При делении большей стороны АВ в золотой пропорции получается симметричный квадрат BCFE и меньший по площади прямоугольник AEFD, стороны которого, как и в исходной целой фигуре, соотносятся друг с другом в золотой пропорции, то есть AD/AE = . Его также можно поделить в золотой пропорции на квадрат и прямоугольник, несущий в себе подобие с целым, и так до бесконечности. Причем при каждом делении отношение площади квадрата к площади прямоугольника дает золотую пропорцию = 0,618. Этот прямоугольник называется гармоничным. Из всех возможных прямоугольников он интуитивно воспринимается как самый "красивый", что было известно еще в античном мире, где практически все дворцы несли в себе золотую пропорцию, то есть их фасады имели форму гармоничного прямоугольника.

Только те элементы системы, которые несут в себе "золотое" соотношение между "свободой выбора" и закономерностью могут устойчиво существовать длительное время, то есть обладают живучестью. Любое отклонение от "золотой пропорции" ведет к саморазрушению данной подсистемы. Это относится к системам любой природы, в том числе и идеальной. Например статистические исследования произведений классиков литературы показывают, что количество неожиданного, нового, авангардного в их произведениях соотносятся с законами жанра (например, законы стихосложения, рифма, ритмичность и т.п.) в пропорции, тяготеющей к "золотому сечению".

Особенно характерно подчинение закону гармонии для биосистем, которые буквально "напичканы" золотыми пропорциями. Не случайно магическим символом жизни считается пентаграмма (пятиконечная звезда), в которой можно насчитать более двухсот золотых сечений. Вообще пятеричная симметрия характерна для биосистем. Например, в неживой природе практически не используются кристаллические структуры с пятеричной симметрией, в то же время вирусы, как известно, могут кристаллизоваться, и эти кристаллы имеют пятеричную симметрию (типа футбольного мяча, скроенного из правильных пятиугольников). Человек (и не только человек) умеет интуитивно чувствовать гармонию. Его притягивает то, что несет в себе гармонию, и отталкивает дисгармония. Гармоничные структуры мы называем словом "красота". Красивое тело построено по закону золотого сечения. Красивое здание несет в своих формах золотую пропорцию. И наоборот, здания, в которых эти пропорции не соблюдены, вызывают ощущение уродства. В красивом (гармоничном) сочетании звуков заложена золотая пропорция (звукоряд Пифагора). По закону золотого сечения построена Солнечная система (закон Боде). Пятеричную симметрию имеет планета Земля, кора которой выложена из пятиугольных плит (уже это должно натолкнуть нас на мысль, что Земля есть живое существо).

Есть основания думать, что весь мир построен по принципу золотой пропорции. Совсем недавно российский ученый А. Злобин, анализируя расположение камней Стоунхенжа, вывел интересную формулу, связывающую между собой три наиболее фундаментальные константы:

/ = mH, где = 3,14159..., e = 2,718..., = 1,618... (одно из чисел золотого сечения, всего их два, второе число = 0,618..., оба они получаются как корни квадратного уравнения 2 + = 1). Самое поразительное, что mH = 1.007939... – есть атомный вес водорода (можно проверить по таблице Менделеева). Дробная часть этого числа характеризует относительное количество содержания во Вселенной тяжелых изотопов водорода, то есть атомов водорода, ядра которых содержат более одного нуклона. По-видимому, в этом соотношении заложено, в каких дозах нарушается симметрия во Вселенной, или по крайней мере в нашей области Вселенной. На мой взгляд, эта формула не уступает по важности формуле Эйнштейна или формуле Больцмана.

Механистический подход достаточно удачно вскрывает закономерную сторону мироздания, где царит порядок и симметрия. Но вторую, асимметричную сторону мира, для которой характерна "свобода выбора", непредсказуемость, которая ассоциируется у нас с понятием "жизнь", механистическая наука осмыслить не в состоянии. Это основная причина того, что, идя путем редукционизма, даже разобрав организм на отдельные клеточки, клетки - на молекулы, молекулы – на атомы, атомы – на элементарные частицы, мы до сих пор не можем понять сути феномена жизни, мы не в состоянии воспроизвести ни одного живого организма.

Подобие части и целого не означает их идентичности. Наоборот, еще в античные времена была сформулирована аксиома: целое больше суммы его частей. Сейчас она читается как аксиома эмерджентности (от английского слова эмердженс - возникновение, появление нового): целое всегда имеет особые свойства, отсутствующие у частей-подсистем и не равно сумме элементов, не объединенных системообразующими связями.

Зачастую исходя из свойств отдельных компонентов системы, невозможно предсказать свойства системы как целого. Например, водород и кислород, соединяясь, дают воду, то есть вещество, совершенно непохожее на исходные газы. Особенно сильна эмерджентность в высокоорганизованных биосистемах, таких как теплокровные животные. Здесь появляются такие непостижимые эмерджентные свойства, как образное отражение окружающего мира, психика, разум и т.п.

Особенно заметны эмерджентные свойства при исследовании социальных систем, например, муравейник, пчелиный улей, птичья стая, толпа и т.п. Такие системы обладают качествами, присущими только всей целостности и не сводимыми к сумме качеств существ, образующих эту целостность. Так если во время сезонных перелетов одна из птиц отбивается от стаи, то она не сможет уже долететь до места назначения, так как одна птица "не знает" куда лететь, даже если это "опытная" птица; этим знанием обладает только стая в целом, даже если она состоит из птиц, которые раньше никогда в тех местах не бывали. Птицы, объединенные в стаю, теряют частично свою маневренность (стая более массивна и неповоротлива, чем птицы в отдельности, известны случаи, когда, не сумев сманеврировать, стая птиц врезалась в землю). Аналогично человек в толпе теряет часть своей свободы и позволяет увлечь себя "голосу толпы", чему впоследствии может сам немало удивляться (для выхода из толпы нужно затратить определенную энергию по преодолению системообразующей силы, это удается далеко не каждому).

Эмерджентность невозможно разложить на составляющие, ее можно лишь принять как данность и необходимо изучать непосредственно. Это есть нечто изначально целостное, неделимое, присущее только всей системе в целом и никакому элементу системы в отдельности. То есть к эмерджентности неприменим принцип редукционизма. Именно поэтому в эмерджентности наиболее ясно проявляется ограниченность механистического подхода к пониманию сложных систем.

Не менее интересно и свойство иерархичности систем. Иерархия переводится как расположение ступенчатым рядом. Иерархичность есть одно из основных свойств систем, в соответствии с которым любая система сама может являться элементом более общей системы, в то же время каждый элемент системы сам в свою очередь может быть системой.

Математически точно доказано, что иерархические системы быстрее возникают из составляющих их частей, чем неиерархические системы, имеющие такое же число элементов (примером может служить история компьютерного программирования: современную сложную компьютерную систему практически невозможно создать без использования различных методов структурирования данных и программного кода). Они также более пластичны к нарушениям. То есть если разложить иерархическую систему на подсистемы, то последние могут продолжать взаимодействовать и снова организуются, достигая более высокого уровня сложности.

Современный уровень знаний позволяет представить иерархию природных систем в виде следующей цепочки: элементарные частицы - атомы - молекулы - клетки - многоклеточные - экосистемы - биосфера - космическое тело - звездная система - галактика - скопление галактик - Вселенная. Между уровнями приведенной иерархии биосистем не существует четких границ или разрывов. Между двумя любыми соседними уровнями имеется масса промежуточных переходных форм, например, молекула - макромолекула (полимер) - сложномолекулярный комплекс (вирус) - коацерватная капля - клетка. По большому счету, четкой границы нет даже между отдельным организмом и экосистемой: организм, изолированный от популяции и от экосистемы, не может жить долго, так же как изолированный орган не может жить долго без тела, в котором он изначально зародился. Особенно явно это можно наблюдать на примере социальных существ, например, пчел: пчела, изолированная от улья, не жизнеспособна. В принципе, то же самое можно сказать и про человека.

В настоящее время при исследовании феномена жизни сложилась определенная традиция: в учет принимается только ограниченная область системной иерархии, в лучшем случае от вируса, до биосферы. Выходя за рамки сложившихся традиций, мы в дальнейшем будем рассматривать также и системы более низкого уровня, относимые, в частности, к микромиру, а также системы более высокого иерархического уровня - мегамир: звездные системы, галактики, метагалактика. Только в этом случае удается понять наиболее полно феномен жизни, так как в мире нет ничего изолированного, все многообразие как живой, так и неживой природы неразрывно связано воедино.

На основе сказанного можно сформулировать три наиболее основополагающих принципа системного подхода:

1) дедуктивность - постулируются осуществимые модели, а уже из них в виде теорем выводятся законы, позволяющие существовать таким моделям (в традиционной науке, которая до сих пор тяготеет к механицизму, все наоборот: «Если явление противоречит теории, тем хуже для явления»);

2) рекуррентность - свойства системы данного уровня иерархии выводятся исходя из постулируемых свойств и связей элементов системы (тем самым узаконивается постулируемая эмерджентность);

3) телеологичность - признается существование целесообразности в организации природных систем, изучать которые можно на основе теорий, построенных из простейших моделей этих систем, отдавая в качестве "платы" за простоту моделей их приближенность, ограниченность и высокую вероятность ошибки.