Аннотация программы учебной дисциплины «Фундаментальная и компьютерная алгебра» Направление: 010200. 62 «Математика и компьютерные науки»
Вид материала | Документы |
- Основная образовательная программа высшего профессионального образования Направление, 854.17kb.
- Аннотация программы учебной дисциплины «Математические модели механики сплошных сред», 55.95kb.
- Аннотация программы учебной дисциплины «Метод конечных элементов» Направление 010200., 32.8kb.
- Аннотация программы учебной дисциплины «Методика преподавания математики» Направление, 68.95kb.
- Аннатационная программа дисциплины интегральные преобразования и операционное исчисление, 30.41kb.
- Аннотация программы учебной дисциплины «Компьютерные сети» Направление 010200. 62 «Математика, 31.66kb.
- Аннатационная программа дисциплины стохастический анализ направление подготовки 010200., 38.6kb.
- Рабочая программа дисциплины (модуля) асимптотические методы решения дифференциальных, 19.29kb.
- Рабочая программа дисциплины "Фундаментальная и компьютерная алгебра", 271.65kb.
- Аннотация программы учебной дисциплины «Алгебра и геометрия» Направление: 010400., 41.28kb.
Аннотация программы учебной дисциплины
«Фундаментальная и компьютерная алгебра»
Направление: 010200.62 «Математика и компьютерные науки»
Профиль: Математическое и компьютерное моделирование
Общее количество часов – 576
1, 2, 3 семестр
3 зач., 3 экз.
1. Цели и задачи дисциплины.
Целями освоения дисциплины «Фундаментальная и компьютерная алгебра» являются:
– получение базовых знаний по алгебре и копьютерной алгебре;
– привитие общематематической культуры: умение логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями, применять полученные знания для решения алгебраических и геометрических задач и задач, связанных с приложениями алгебраических методов. Получаемые знания необходимы для понимания и освоения всех курсов математики, компьютерных наук и их приложений.
2. Требования к уровню освоения содержания дисциплины.
Процесс изучения дисциплины направлен на формирование следующих компетенций:
способностью владеть культурой мышления, умение аргументировано и ясно строить устную и письменную речь (ОК-1), способность понимать и анализировать мировоззренческие, социально и личностно значимые философские проблемы (ОК - 3), способность работать с информацией в глобальных компьютерных сетях (ОК – 12), способность работы с информацией из различных источников, включая сетевые ресурсы сети Интернет, для решения профессиональных и социальных задач (ОК - 15), способность к интеллектуальному, культурному, нравственному и профессиональному саморазвитию, стремление к повышению своей квалификации и мастерства (ОК - 16); способность демонстрации общенаучных базовых знаний математики, понимание основных фактов, концепций, принципов, теорий (ПК - 1), способность приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии (ПК - 2), способность понимать и применять в исследовательской и прикладной деятельности современный математический аппарат (ПК - 3), способность решать в составе коллектива решать задачи профессиональной деятельности (ПК - 4), способность критически переосмысливать накопленный опыт (ПК - 5), способность составлять и контролировать план выполняемой работы, планировать необходимые для выполнения работы ресурсы, оценивать результаты собственной работы (ПК - 12).
В результате освоения дисциплины обучающийся должен:
1) Знать:
– основные понятия и результаты по алгебре (теория матриц, системы линейных уравнений, теория многочленов, линейные пространства и линейная зависимость, собственные векторы и собственные значения, канонический вид матриц линейных операторов, геометрия метрических линейных пространств, свойства билинейных функций, классификацию квадрик, основы теории групп и колец). Студенты должны знать логические связи между ними. Знать основы компьютерной алгебр.
2) Уметь:
– решать системы линейных уравнений, вычислять определители, исследовать свойства многочленов, находить собственные векторы и собственные значения, канонический вид матриц линейных операторов, классифицировать квадрики, основные свойства групп, колец.
3) Владеть:
– математическим аппаратом алгебры и компьютерной алгебры, аналитическими методами исследования алгебраических и геометрических объектов.
3. Содержание дисциплины. Основные разделы.
Матрицы и операции над ними. Элементарные преобразования матриц и приведение их к ступенчатой форме. Определитель n-го порядка и его свойства. Теорема Лапласа и ее следствия. Обратная матрица. Линейные операции над векторами. Понятие вещественного линейного пространства. Линейная зависимость векторов и ее геометрический смысл. Ранг матрицы. Теорема о базисном миноре и ее следствия. Система линейных алгебраических уравнений. Системы с квадратной невырожденной матрицей. Исследование систем общего вида. Комплексные числа и операции над ними. Линейное пространство над произвольным полем. Линейные подпространства: сумма, пересечение. Линейное аффинное многообразие. Евклидово и унитарное пространство. Ортогональные системы векторов. Матрица линейного оператора. Линейное пространство линейных операторов. Умножение линейных операторов, обратный оператор. Собственные значения и собственные векторы линейного оператора. Инвариантные подпространства и треугольная форма матрицы линейного оператора. Корневые подпространства и жорданова форма линейного оператора. Комплексные числа и операции над ними. Линейное пространство над произвольным полем. Линейные подпространства: сумма, пересечение. Линейное аффинное многообразие. Евклидово и унитарное пространство. Ортогональные системы векторов. Матрица линейного оператора. Линейное пространство линейных операторов. Умножение линейных операторов, обратный оператор. Собственные значения и собственные векторы линейного оператора. Инвариантные подпространства и треугольная форма матрицы линейного оператора. Корневые подпространства и жорданова форма линейного оператора.
Линейные операторы в евклидовом (унитарном) пространстве. Сопряженный оператор. Нормальный, унитарный и самосопряженный операторы. Квадратный корень из оператора. Квадратичные формы в линейном пространстве. Приведение квадратичной формы к каноническому виду и закон инерции. Квадратичные формы в евклидовом пространстве. Основы компьютерной алгебры.
Составитель: доцент каф. МАиМ Кван Н.В.