Рабочая программа по дисциплине Анализ и прогноз уровня загрязнения атмосферы, океана и вод суши Специальность 020804 геоэкология

Вид материалаРабочая программа

Содержание


Нефть и нефтепродукты.
Синтетические поверхностно-активные вещества.
Канцерогенные вещества
Тяжелые металлы
Сброс отходов в море с целью захоронения (дампинг).
Техногенные радионуклиды.
Антропогенная экология океана — новое научное направление в океанологии
Концепция ассимиляционной емкости
Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря
Геоинформационные системы как инструмент для комплексной оценки состояния окружающей среды
Подобный материал:
1   ...   7   8   9   10   11   12   13   14   ...   20
Источники и виды загрязнения океана

Основные вопросы, рассматриваемые на лекции:
  1. Особенности поведения загрязняющих веществ в океане
  2. Антропогенная экология океана — новое научное направление в океанологии
  3. Концепция ассимиляционной емкости
  4. Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря



  1. Особенности поведения загрязняющих веществ в океане

Последние десятилетия знаменуются усилением антропогенных воздействий на морские экосистемы в результате загрязнения морей и океанов. Распространение многих загрязняющих веществ приобрело локальный, региональный и даже глобальный масштабы. Поэтому загрязнение морей, океанов и их биоты стало важнейшей международной проблемой, а необходимость охраны морской среды от загрязнений диктуется требованиями рационального использования природных ресурсов.

Под загрязнением моря понимается: «введение человеком прямо или косвенно веществ или энергии в морскую среду (включая эстуарии), влекущее такие вредные последствия, как ущерб живым ресурсам, опасность для здоровья людей, помехи в морской деятельности, включая рыболовство, ухудшение качества морской воды и умень­шение ее полезных свойств». Этот список включает вещества с токсическими свойствами, сбросы нагретых вод (тепловое загрязнение), патогенные микробы, твердые отходы, взвешенные вещества, биогенные вещества и некоторые другие формы антропогенных воздействий.

Наиболее актуальной в наше время стала проблема химиче­ского загрязнения океана.

К источникам загрязнения океана и морей можно отнести следующие:
  • сброс промышленных и хозяйственных вод непосредственно в море или с речным стоком;
  • поступление с суши различных веществ, применяемых в сельском и лесном хозяйстве;
  • преднамеренное захоронение в море загрязняющих веществ; утечки различных веществ в процессе судовых операций;
  • аварийные выбросы с судов или подводных трубопроводов;
  • разработка полезных ископаемых на морском дне;
  • перенос загрязняющих веществ через атмосферу.

Перечень получаемых океаном загрязняющих веществ чрезвычайно обширен. Все они различаются между собой по степени токсичности и масштабам распространения — от прибрежных (локальных) до глобальных.

В Мировом океане находят все новые загрязняющие вещества. Глобальное распространение приобретают наиболее опасные для организмов хлорорганические соединения, полиароматические углеводороды и некоторые другие. Они обладают высокой биоаккумулятивной способностью, резким токсическим и канцерогенным эффектом.

Неуклонное нарастание суммарного воздействия многих источников загрязнения приводит к прогрессирующей эвтрофикации прибрежных морских зон и микробиологическому загрязнению воды, что существенно затрудняет использование воды для раз­личных нужд человека.

Нефть и нефтепродукты. Нефть представляет собой вязкую маслянистую жидкость, обычно имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов (от C5 до С70) и содержат 80—85 % С, 10—14 % Н, 0,01—7 % S, 0,01 % N и 0—7 % О2.

Основные компоненты нефти — углеводороды (до 98 %) — подразделяются на четыре класса.

1. Парафины (алканы) (до 90 % от общего состава нефти) —устойчивые насыщенные соединения CnH2n-2, молекулы которых выражены прямой или разветвленной (изоалканы) цепью атомов углерода. Парафины включают газы метан, этан, пропан и другие, соединения с 5—17 атомами углерода являются жидкостями, а с большим числом атомов углерода — твердыми веществами. Легкие парафины обладают максимальной летучестью и растворимостью в воде.

2. Циклопарафины. (нафтены)—насыщенные циклические соединения СnН2n с 5—6 атомами углерода в кольце (30—60 % от общего состава нефти). Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические нафтены. Эти соединения очень устойчивы и плохо поддаются биоразложению.

3. Ароматические углеводороды (20-40 % от общего состава нефти) — ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем соответствующие нафтены. Атомы углерода в этих соединениях также могут замещаться алкильными группами. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол), затем бициклические (нафталин), трициклические (антрацен, фенантрен) и полициклические (например, пирен с 4 кольцами) углеводороды.

4. Олефипы (алкены) (до 10 % от общего состава нефти) —ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

В зависимости от месторождения, нефти существенно различа­ются по своему составу. Так, пенсильванская и кувейтская нефти квалифицируются как парафинистые, бакинская и калифорний­ская — преимущественно нафтеновые, остальные нефти — проме­жуточных типов.

В нефти присутствуют также серосодержащие соединения (до 7% серы), жирные кислоты (до 5% кислорода), азотные соединения (до 1 % азота) и некоторые металлоорганические производные (с ванадием, кобальтом и никелем).

Количественный анализ и идентификация нефтепродуктов в морской среде представляют значительные трудности не только из-за их многокомпонентности и различия форм существования, но и вследствие природного фона углеводородов естественного и биогенного происхождения. Например, около 90 % растворенных в поверхностных водах океана низкомолекулярных углеводородов типа этилена связано с метаболической активностью организмов и распадом их остатков. Однако в районах интенсивного загряз­нения уровень содержания подобных углеводородов повышается на 4—5 порядков.

Углеводороды биогенного и нефтяного происхождения, по данным экспериментальных исследований, имеют ряд различий.

1. Нефть представляет собой более сложную смесь углеводородов с большим диапазоном структур и относительной молекулярной массой.

2. Нефть содержит несколько гомологических серий, в которых соседние члены обычно имеют равные концентрации. Например, в ряду алканов С12—C22 отношение четных и нечетных членов равно единице, тогда как биогенные углеводороды в том же ряду содержат преимущественно нечетные члены.

3. Нефть содержит более широкий диапазон циклоалканов и ароматических углеводородов. Многие соединения, такие, как моно-, ди-, три- и тетраметилбензолы не обнаружены в морских организмах.

4. Нефть содержит многочисленные нафтено-ароматические углеводороды, разнообразные гетеросоединения (имеющие в составе серу, азот, кислород, ионы металлов), тяжелые асфальтоподобные вещества — все они практически отсутствуют в организмах.

Нефть и нефтепродукты являются наиболее распространен­ными загрязняющими веществами в Мировом океане.

Пути поступления и формы существования нефтяных углеводо­родов многообразны (растворенная, эмульгированная, пленочная, твердообразная). М. П. Нестерова (1984) отмечает следующие пути поступления:

сбросы в портах и припортовых акваториях, вклюная потери при загрузке бункеров наливных судов (17 %~);
  • сброс промышленных- отходов и сточных вод (10%);
  • ливневые стоки (5 %);
  • катастрофы судов и буровых установок в море (6 %);
  • бурение на шельфах (1 %);
  • атмосферные выпадения (10 %)',
  • вынос речным стоком во всем многообразии форм (28%).
  • сбросы в море промывочных, балластных и льяльных вод с судов (23%);

Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод,—все это обусловливает присут­ствие постоянных полей загрязнений на трассах морских путей.

Свойством нефтей является их флуоресценция при ультрафиолето­вом облучении. Максимальная интенсивность флуоресценции наб­людается в интервале волн 440—483 нм.

Различие оптических характеристик нефтяных пленок и мор­ской воды позволяет проводить дистанционное обнаружение и оценку нефтяных загрязнений на поверхности моря в ультрафиолетовой, видимой и инфракрасной частях спектра. Для этого при­меняются пассивные и активные методы. Большие массы нефти с суши поступают в моря по рекам, с бытовыми и ливневыми стоками.

Судьба разлитой в море нефти определяется суммой следую­щих процессов: испарение, эмульгирование, растворение, окисле­ние, образование нефтяных агрегатов, седиментация и биодеградация.

Попадая в морскую среду, нефть сначала растекается в виде поверхностной пленки, образуя слики различной мощности. По цвету пленки можно приблизительно оценить ее толщину. Нефтяная пленка изменяет интенсивность и спект­ральный состав проникающего в водную массу света. Пропуска­ние света тонкими пленками сырой нефти составляет 1 —10 % (280 нм), 60—70 % (400 нм). Пленка нефти толщиной 30—40 мкм полностью поглощает инфракрасное излучение.

В первое время существования нефтяных сликов большое зна­чение имеет процесс испарения углеводородов. По данным наблю­дений, за 12 ч улетучивается до 25 % легких фракций нефти, при температуре воды 15 °С все углеводороды до C15 испаряются за 10 сут (Нестерова, Немировская, 1985).

Все углеводороды обладают слабой растворимостью в воде, уменьшающейся с увеличением числа атомов углерода в моле­куле. В 1 л дистиллированной воды растворяется около 10 мг соединений с С6, 1 мг —с С8 и 0,01 мг соединений с С12. Например, при средней температуре морской воды растворимость бензола составляет 820 мкг/л, толуола — 470, пентана — 360, гексана — 138 и гептана — 52 мкг/л. Растворимые компоненты, содержание которых в сырой нефти не превышает 0,01 %, являются наиболее токсичными- для водных организмов. К ним же относятся и веще­ства типа бенз(а)пирена.

Смешиваясь с водой, нефть образует эмульсии двух типов: пря­мые «нефть в воде» и обратные «вода в нефти». Прямые эмуль­сии, составленные капельками нефти диаметром до 0,5 мкм, ме­нее устойчивы и особенно характерны для нефтей, содержащих поверхностно-активные вещества. После удаления летучих и растворимых фракций остаточная нефть чаще образует вязкие обратные эмульсии, которые стабилизируются высокомолекуляр­ными соединениями типа смол и асфальтенов и содержат 50— 80 % воды («шоколадный мусс»). Под влиянием абиотических процессов вязкость «мусса» повышается и начинается его слипа­ние в агрегаты — нефтяные комочки размерами от 1 мм до 10 см (чаще 1—20 мм). Агрегаты представляют собой смесь вы­сокомолекулярных углеводородов, смол и асфальтенов. Потери нефти на формирование агрегатов составляют 5—10%- Высоко­вязкие структурированные образования — «шоколадный мусс» и нефтяные комочки — могут длительное время сохраняться на поверхности моря, переноситься течениями, выбрасываться на берег и оседать на дно. Нефтяные комочки нередко заселяются перифитоном (сине-зеленые и диатомовые водоросли, усоногие рачки и другие беспозвоночные).

Пестициды составляют обширную группу искусственно создан­ных веществ, используемых для борьбы с вредителями и болез­нями растений. В зависимости от целевого назначения пестициды делятся на следующие группы: инсектициды — для борьбы с вред­ными насекомыми, фунгициды и бактерициды — для борьбы с грибными и бактериальными болезнями растений, гербициды — против сорных растений и т. д. Согласно расчетам экономистов, каждый рубль, затраченный на химическую защиту растений от вредителей и болезней, обеспечивает сохранение урожая и его качество при возделывании зерновых и овощных культур в сред­нем на 10 руб., технических и плодовых — до 30 руб. Вместе с тем экологическими исследованиями установлено, что пестициды, уничтожая вредителей урожаев, наносят огромный вред многим полезным организмам и подрывают здоровье природных биоцено­зов. В сельском хозяйстве уже давно стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологи­чески чистым) методам борьбы с вредителями.

В настоящее время более 5 млн. т пестицидов ежегодно посту­пает на мировой рынок. Около 1,5 млн. т этих веществ уже вошло в состав наземных и морских экосистем эоловым или водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязня­ющих сточные воды.

В водной среде чаще других встречаются представители инсек­тицидов, фунгицидов и гербицидов.

Синтезированные инсектициды делятся на три основные группы: хлорорганические, фосфорорганические и карбаматы.

Хлорорганические инсектициды получают путем хлорирования ароматических или гетероциклических жидких углеводородов. К ним относятся ДДТ (дихлордифенилтрихлорэтан) и его произ­водные, в молекулах которых устойчивость алифатических и аро­матических групп в совместном присутствии возрастает, всевоз­можные хлорированные производные циклодиена (элдрин, дил-дрин, гептахлор и др.), а также многочисленные изомеры гекса-хлорциклогексана (у-ГХЦГ), из которых наиболее опасен линдан. Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации.

В водной среде часто встречаются полихлорбифенилы (ПХБ) — производные ДДТ без алифатической части, насчиты­вающие 210 теоретических гомологов и изомеров.

За последние 40 лет использовано более 1,2 млн. т ПХБ в производстве пластмасс, красителей, трансформаторов, конденсаторов и т. д. Полихлорбифенилы попадают в окружающую среду в результате сбросов промышленных сточных вод и сжига­ния твердых отходов на свалках. Последний источник поставляет ПХБ в атмосферу, откуда они с атмосферными осадками выпа­дают во всех районах земного шара. Так, в пробах снега, взятых в Антарктиде, содержание ПХБ составило 0,03—1,2 нг/л.

Фосфорорганические пестициды — это сложные эфиры различных спиртов ортофосфорной кислоты или одной из ее производ­ных, тиофосфорной. В эту группу входят современные инсекти­циды с характерной избирательностью действия по отношению к насекомым. Большинство органофосфатов подвержены довольно быстрому (в течение месяца) биохимическому распаду в почве и воде. Синтезировано более 50 тысяч активных веществ, из ко­торых особую известность получили паратион, малатион, фозалонг, дурсбан.

Карбаматы — это, как правило, сложные эфиры n-метакарба-миновой кислоты. Большинство из них также обладает избирательностью действия.

В качестве фунгицидов, применяемых для борьбы с грибными заболеваниями растений, ранее использовались соли меди и не­которые минеральные соединения серы. Затем широкое употреб­ление нашли ртутьорганические вещества типа хлорированной метилртути, которая из-за своей крайней токсичности для жи­вотных была заменена метоксиэтилами ртути и ацетатами фенил-ртути.

В группу гербицидов входят производные феноксиуксусной кислоты, обладающие сильным физиологическим действием. Триазины (например, симазин) и замещенные мочевины (монурон, диурон, пихлорам) составляют еще одну группу гербицидов, довольна хорошо растворимых в воде и устойчивых в почвах. Наиболее сильным из всех гербицидов является пихлорам. Для полного уничтожения некоторых видов растений требуется всего лишь 0,06 кг этого вещества на 1 га.

В морской среде постоянно обнаруживаются ДДТ и его метаболиты, ПХБ, ГХЦГ, делдрин, тетрахлорфенол и другие.

Синтетические поверхностно-активные вещества. Детергенты (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в со­став синтетических моющих средств (CMC), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ по­падают в материковые поверхностные воды и морскую среду. Синтетические моющие средства содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингре­диентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты нат­рия и другие.

Молекулы всех СПАВ состоят из гидрофильной и гидрофобной частей. Гидрофильной частью служат карбоксильная (СОО-), сульфатная (OSO3-) и сульфонатная (SO3-) группы, а также скоп­ления остатков с группами —СН2—СН2—О—СН2—СН2— или группы, содержащие азот и фосфор. Гидрофобная часть состоит обычно из прямой, включающей 10—18 атомов углерода, или раз­ветвленной парафиновой цепи, из бензольного или нафталинового кольца с алкильными радикалами.

В зависимости от природы и структуры гидрофильной части молекулы СПАВ делятся на анионоактивные (органический ион заряжен отрицательно), катионоактивные (органический ион за­ряжен положительно), амфотерные (проявляющие в кислом раст­воре катионактивные свойства, а в щелочном — анионоактивные) и неионогенные. Последние не образуют ионов в воде. Их раст­воримость обусловлена функциональными группами, имеющими -сильное сродство к воде, и образованием водородной связи между молекулами воды и атомами кислорода, входящими в полиэти-ленгликолевый радикал ПАВ.

Наиболее распространенными среди СПАВ являются анионоактивные вещества. На их долю приходится более 50 % всех производимых в мире СПАВ. Наибольшее рас­пространение получили алкиларилсульфонаты (сульфонолы) и алкилсульфаты. Молекулы сульфонолов содержат ароматическое кольцо, водородные атомы которого замещены одной или несколь­кими алкильными группами, а в качестве сольватирующей группы — остаток серной кислоты. Многочисленные алкилбензол-сульфонаты и алкилнафталинсульфонаты часто исполь­зуются при изготовлении различных бытовых и промышленных CMC.

Присутствие СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химической технологии, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования.

В сельском хозяйстве применяются СПАВ в составе пестицидов. С помощью СПАВ эмульгируют нерастворимые в воде, но растворимые в органических растворителях жидкие и порошко­образные токсичные вещества, причем многие СПАВ сами обла­дают инсектицидными и гербицидными свойствами.

Канцерогенные вещества — это химически однородные соеди­нения, проявляющие трансформирующую активность и способ­ные вызывать канцерогенные, тератогенные (нарушение процес­сов эмбрионального развития) или мутагенные изменения в орга­низмах. В зависимости от условий воздействия они могут приво­дить к ингибированию роста, ускорению старения, токсикогенезу, нарушению индивидуального развития и изменению генофонда ор­ганизмов. К веществам, обладающим канцерогенными свойствами, отно­сятся хлорированные алифатические углеводороды с короткой щепочкой атомов углерода в молекуле, винилхлорид, пестицидные препараты и, особенно, полициклические ароматические углево­дороды (ПАУ). Последние представляют собой высокомолекуляр­ные органические соединения, в молекулах которых бензольное кольцо является основным элементом структуры. Многочисленные незамещенные ПАУ содержат в молекуле от 3 до 7 бензольных колец, разнообразно соединенных между собой. Существует также большое число полициклических структур, содержащих функциональную группу либо в бензольном кольце, либо в боко­вой цепи. Эта галоген-, амино-, сульфо-, нитропроизводные, а также спирты, альдегиды, эфиры, кетоны, кислоты, хиноны и другие соединения ароматического ряда.

Растворимость ПАУ в воде невелика и уменьшается с увеличением молекулярной массы: от 16 100 мкг/л (аценафтилен) до 0,11 мкг/л (3,4-бензпирен). Присутствие в воде солей практически не влияет на растворимость ПАУ. Однако в присутствии бензола, нефти, нефтепродуктов, детергентов и других органических ве­ществ растворимость ПАУ резко возрастает. Из группы незамещенных ПАУ в природных условиях наиболее известен и распространен 3,4-бензпирен (БП).

Источниками ПАУ в окружающей среде могут служить природные и антропогенные процессы. Концентрация БП в вулкани­ческом пепле составляет 0,3—0,9 мкг/кг. Это означает, что с пеп­лом в окружающую среду может поступать 1,2—24 т БП в год. Поэтому максимальное количество ПАУ в современных донных осадках Мирового океана (более 100 мкг/кг массы сухого веще­ства) обнаружено в тектонически активных зонах, подверженных глубинному термическому воздействию.

По имеющимся сведениям, некоторые морские растения и жи­вотные могут синтезировать ПАУ. В водорослях и морских тра­вах вблизи западного побережья Центральной Америки содержа­ние БП достигает 0,44 мкг/г, а в некоторых ракообразных в Арктике—0,23 мкг/г. Анаэробные бактерии вырабатывают до 8,0 мкг БП из 1 г липидных экстрактов планктона. С другой сто­роны, существуют специальные виды морских и почвенных бакте­рий, разлагающих углеводороды, включая ПАУ.

По оценкам Л. М. Шабада (1973) и А. П. Ильницкого (1975), фоновая концентрация БП, создаваемая в результате синтеза БП растительными организмами и вулканической дея­тельности, составляет: в почвах 5—10 мкг/кг (сухого вещества), в растениях 1—5 мкг/кг, в воде пресноводных водоемов 0,0001 мкг/л. Соответственно выводятся и градации степени за­грязненности объектов окружающей среды (табл. 1.5).

Основные антропогенные источники ПАУ в окружающей среде — это пиролиз органических веществ при сжигании различ­ных материалов, древесины и топлива. Пиролитическое образование ПАУ происходит при температуре 650—900 °С и недостатке кислорода в пламени. Образование БП наблюдалось в процессе пиролиза древесины с максимальным выходом при 300—350 °С (Дикун, 1970).

По оценке М. Зюсса (Г976 г.), глобальная эмиссия БП в 70-х годах составляла около 5000 т в год, причем 72 % приходится на промышленность и 27 % — на все виды открытого сжигания.

Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк и другие) относятся к числу распространенных и весьма токсичных, загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому несмотря на очистные ме­роприятия, содержание соединений тяжелых металлов в промыш­ленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, сви­нец и кадмий.

Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород, ежегодно выделяется 3,5 тыс. т ртути. В составе атмосферной пыли содержится около 12 тыс. т ртути, причем значительная часть антропогенного происхождения. В результате извержения вулканов и с атмосферными осадками на поверхность океана ежегодно поступает 50 тыс. т ртути, а при дегазации литосферы — 25—150 тыс. т. Около половины годового промышленного произ­водства этого металла (9—10 тыс. т/год) различными путями по­падает в океан. Содержание ртути в каменном угле и нефти со­ставляет в среднем 1 мг/кг, поэтому при сжигании ископаемого топлива Мировой океан получает более 2 тыс. т/год. Годовая до­быча ртути превышает 0,1 % от ее общего содержания в Мировом океане, однако антропогенный приток уже превосходит естественный вынос реками, что характерно для многих металлов.

В районах, загрязняемых промышленными сточными водами,, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бентосные бактерии переводят хлориды в высокотоксичную (моно- и ди-) метилртуть CH3Hg. Заражение морепродуктов неоднократно приводило к ртутному отравлению, прибрежного населения. К 1977 г. в Японии насчитывалось 2800 жертв болезни Минамата. Причиной послужили отходы пред­приятий по производству хлорвинила и ацетальдегида, на которых, в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в за­лив Минамата.

Свинец — типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свинец, активно рассеивается в окружающую среду в процессе хозяйст­венной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприя­тий, с выхлопными газами двигателей внутреннего сгорания.

По оценкам В. В. Добровольского (1987), перераспределение масс свинца между сушей и Мировым океаном имеет следующий вид. С. речным стоком при средней концентрации свинца в воде 1 мкг/л в океан водорастворимого свинца выносится около 40 103 т/год, в твердой фазе речных взвесей примерно 2800-103 т/год, в тонком органическом детрите—10 103 т/год. Если учесть, что в узкой прибрежной полосе шельфа оседает более 90 % речных взвесей и значительная часть водорастворимых соединений металлов захватывается гелями оксидов железа, то в результате пелагиаль океана получает лишь около (200— 300) 103 т в составе тонких взвесей и (25—30) 103 т растворенных соединений.

Миграционный поток свинца с континентов в океан идет не только с речным стоком, но и через атмосферу. С континенталь­ной пылью океан получает (20—30)-103т свинца в год. Поступле­ние его на поверхность океана с жидкими атмосферными осад­ками оценивается в (400—2500) • 103 т/год при концентрации в дождевой воде 1—6 мкг/л. Источниками свинца, поступающего в атмосферу являются вулканические выбросы (15—30 т/год в составе пелитовых продуктов извержений и 4 103 т/год в суб­микронных частицах), летучие органические соединения от расти­тельности (250—300 т/год), продукты сгорания при пожарах ((6—7) 103 т/год) и современная промышленность. Производ­ство свинца возросло от 20-103 т/год в начале XIX в. до 3500 103 т/год к началу 80-х годов XX в. Современный выброс •свинца в окружающую среду с индустриальными и бытовыми отходами оценивается в (100—400) 103 т/год.

Кадмий, мировое производство которого в 70-х годах достигло 15 103 т/год, также поступает в океан с речным стоком и через атмосферу. Объем атмосферного выноса кадмия, по разным оценкам, составляет (1,7—8,6) • 103 т/год.

Сброс отходов в море с целью захоронения (дампинг). Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлама, отхо­дов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов и т. п. Объем захоронений составляет около 10 % от всей массы загрязняющих веществ, поступающих в Мировой океан. Так, с 1976 по 1980 г. ежегодно с целью захоронения, чем и опреде­ляется понятие «дампинг», сбрасывалось более 150 млн. т разно­образных отходов.

Основанием для дампинга в море служит способность мор­ской среды к переработке большого количества органических и неорганических веществ без особого ущерба качеству воды. Од­нако эта способность не беспредельна. Поэтому дампинг рассмат­ривается как вынужденная мера, временная дань общества несо­вершенству технологии. Отсюда особую важность приобретают выработка и научное обоснование путей регулирования сбросов отходов в море.

В шламах промышленных производств присутствуют разнооб­разные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 32—40 % органических веществ, 0,56 % азота, 0,44 % фосфора, 0,155 % цинка, 0,085 % свинца, 0,001 % кадмия, 0,001 ртути. Шламы очистных сооружений коммунальных стоков содержат (на массу сухого вещества) до. 12 % гуминовых веществ, до 3 % общего азота, до 3,8 % фосфатов, 9—13 % жиров, 7—10 % углеводов и загрязнены тяжелыми металлами. Аналогичный состав имеют и материалы дночерпания.

Во время сброса при прохождении материала через столб воды часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды. Наличие органических веществ часто приводит к быстрому рас­ходованию кислорода в воде и нередко к его полному исчезнове­нию, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количе­ства органических веществ создает в грунтах устойчивую восста­новительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов в восстановлен­ной форме. При этом происходит восстановление сульфатов и нитратов, выделяются фосфаты.

Воздействию сбрасываемых материалов в разной степени под­вергаются организмы нейстона, пелагиали и бентоса. В случае образования поверхностных пленок, содержащих нефтяные угле­водороды и СПАВ, нарушается газообмен на границе воздух— вода. Это приводит к гибели личинок беспозвоночных, личинок и мальков рыб, вызывает увеличение численности нефтеокисляющих и патогенных микроорганизмов. Наличие в воде загрязня­ющей взвеси ухудшает условия питания, дыхания и обмена ве­ществ у гидробионтов, сокращает скорость роста, тормозит по­ловое созревание планктонных ракообразных. Загрязняющие ве­щества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробионтов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышен­ная мутность придонной воды приводят к засыпке и гибели от удушья прикрепленных и малоподвижных форм бентоса. У вы­живших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко из­меняется видовой состав донного сообщества.

При организации системы контроля за сбросами отходов в море решающее значение имеет определение районов дампинга с учетом свойств материалов и характеристик морской среды. Необходимые критерии решения проблемы со­держит «Конвенция по предотвращению загрязнения моря сбро­сами отходов и других материалов» (Лондонская конвенция по дампингу, 1972 г.). Основные требования Конвенции сле­дующие.

1. Оценка количества, состояния и свойств (физических, хи­мических, биохимических, биологических) сбрасываемых мате­риалов, их токсичности, устойчивости, склонности к накоплению и биотрансформации в водной среде и морских организмах. Использование возможностей нейтрализации, обезвреживания и реутилизации отходов.

2. Выбор районов сброса с учетом требований максимального разбавления веществ, минимального распространения их за пределы сброса, благоприятного сочетания гидрологических и гидрофизических условий.

3. Обеспечение удаленности районов сброса от районов нагула рыб и нереста, от мест обитания редких и чувствительных видов гидробионтов, от зон отдыха и хозяйственного использования.

Техногенные радионуклиды. Океану свойственна естественная радиоактивность, обуслов­ленная присутствием в нем 40К, 87Rb, 3H, 14С, а также радионуклидов рядов урана и тория. Более 90 % естественной радиоак­тивности воды океана приходится на долю 40К, что составляет 18,5-1021 Бк. Единица активности в системе СИ — беккерель (Бк), равен активности изотопа, в котором за время 1 с происходит 1 акт распада. Ранее широко использовалась внесистемная единица радиоактивности кюри (Ки), соответствующая актив­ности изотопа, в котором за время 1 с происходит 3,7-1010 актов распада.

Радиоактивные вещества техногенного происхождения, глав­ным образом продукты деления урана и плутония, стали в боль­ших количествах поступать в океан после 1945 г., т. е. с начала испытаний ядерного оружия и широкого развития промышлен­ного получения делящихся материалов и радиоактивных нукли­дов. Выявляются три группы источников: 1) испытания ядерного оружия, 2) сброс радиоактивных отходов, 3) аварии судов с атомными двигателями и аварии, связанные с использованием, транспортировкой и получением радионуклидов.

Многие радиоактивные изотопы с коротким периодом полураспада, хотя и обнаруживаются после взрыва в воде и морских организмах, в глобальных радиоактив­ных выпадениях почти не встречаются. Здесь в первую очередь присутствуют 90Sr и 137Cs с периодом полураспада около 30 лет. Наиболее опасным радионуклидом из непрореагировавших остатков ядерных зарядов является 239Pu (T1/2=24,4-103 лет), очень ядовитый как химическое вещество. По мере распада продуктов деления 90Sr и 137Cs, он становится основным компонентом загрязнения. К моменту моратория атмосферных испытаний ядерного оружия (1963 г.) активность 239Рu в окружающей среде со­ставила 2,5-1016 Бк.

Отдельную группу радионуклидов образуют 3Н, 24Na, 65Zn, 59Fe, 14C, 31Si, 35S, 45Ca, 54Mn, 57,60Co и другие, возникающие при взаимодействии нейтронов с элементами конструкций и внешней среды. Основными продуктами ядерных реакций с нейтронами в морской среде являются радиоизотопы натрия, калия, фосфора, хлора, брома, кальция, марганца, серы, цинка, происходящие из растворенных в морской воде элементов. Это наведенная актив­ность.

Большая часть радионуклидов, попадающих в морскую среду, имеет постоянно присутствующие в воде аналоги, такие, как 239Pu, 239Np, 99TC) трансплутониевые не характерны для состава морской воды, и живое вещество океана должно приспосабли­ваться к ним заново.

В результате переработки ядерного топлива появляется значительное количество радиоактивных отходов в жидкой, твердой и газообразной формах. Основную массу отходов составляют радиоактивные растворы. Учитывая высокую стоимость переработки и хранения концентратов в специальных хранилищах, некоторые страны предпочитают сливать отходы в океан с речным стоком или сбрасывать их в бетонных блоках на дно глубоководных впадин океанов. Для радиоактивных изотопов Ar, Xe, Em и Т еще не разработаны надежные методы концентрирования, поэтому они могут попадать 'в океаны с дождевыми и сточными водами.

При эксплуатации атомных энергетических установок на над­водных и подводных судах, которых насчитывается уже несколько сотен, ежегодно в океан вносят около 3,7-1016 Бк с ионообменными смолами, около 18,5-1013 Бк с жидкими отходами и 12,6-1013 Бк вследствие утечек. Аварийные ситуации также вно­сят значительный вклад в радиоактивность океана. К настоящему времени сумма радиоактивности, привнесенной в океан человеком, не превышает 5,5-1019 Бк, что еще невелико по сравнению с естественным уровнем (18,5-1021 Бк). Однако концентрированноcть и неравномерность выпадений радионукли­дов создает серьезную опасность радиоактивного заражения воды и гидробионтов в отдельных районах океана.

  1. Антропогенная экология океана — новое научное направление в океанологии

В результате антропогенного воздействия в океане возникают дополнительные экологические факторы, способствующие негативной эволюции морских экосистем. Обнаружение этих факторов стимулировало развертывание широких фундаментальных исследований в Мировом океане и зарождение новых научных направлений. К их числу относится антропогенная экология океана. Это новое направление призвано изучать механизмы реагирования организмов на антропогенные воз­действия на уровне клетки, организма, популяции, биоценоза, экосистемы, а также исследовать особенности взаимодействий между живыми организмами и средой обитания в изменившихся условиях.

Объект изучения антропогенной экологии океана — изменение экологических характеристик океана, причем в первую очередь тех изменений, которые имеют значение для экологической оценки состояния биосферы в целом. В основе этих изысканий лежит комплексный анализ состояния морских экосистем с учетом географической зональности и степени антропогенного воздействия.

Антропогенная экология океана применяет для своих целей сле­дующие методы анализа: генетический (оценка канцерогенной и мутагенной опасности), цитологический (изучение клеточного строения морских организмов в нормальном и патологическом состоянии), микробиологический (изучение адаптации микроорга­низмов к токсичным загрязняющим веществам), экологический (познание закономерностей образования и развития популяций и биоценозов в конкретных условиях обитания с целью прогноза их состояния в меняющихся условиях среды), эколого-токсикологический (исследование отклика морских организмов на воздействие загрязнений и определение критических концентраций за­грязняющих веществ), химический (изучение всего комплекса природных и антропогенных химических веществ в морской среде).

Основная задача антропогенной экологии океана состоит в раз­работке научных основ определения критических уровней загряз­няющих веществ в морских экосистемах, оценки ассимиляционной емкости морских экосистем, нормирования антропогенных воздействий на Мировой океан, а также в создании математических моделей экологических процессов для прогноза экологических ситуаций в океане.

Знания о важнейших экологических явлениях в океане (таких, как продукционно-деструкционные процессы, прохождение биогеохимических циклов загрязняющих веществ и т. д.) ограничены недостатком информации. Этим затрудняется прогнозирование экологической ситуации в океане и осуществление природоохран­ных мероприятий. В настоящее время особую значимость приобретает осуществление экологического мониторинга океана, стратегия которого ориентирована на долговременные наблюдения в определенных районах океана с целью создания банка данных, освещающих глобальные перестройки океанических экосистем.


  1. Концепция ассимиляционной емкости

По определению Ю. А. Израэля и А. В. Цыбань (1983, 1985), ассимиляционная емкость морской экосистемы Аi по данному загрязняющему веществу i (или суммы загрязняющих веществ) и для m-й экосистемы — это максимальная динамическая вмести­мость такого количества загрязняющих веществ (в пересчете на всю зону или единицу объема морской экосистемы), которое может быть за единицу времени накоплено, разрушено, трансформировано (биологическими или химическими превращениями) и вы­ведено за счет процессов седиментации, диффузии или любого другого переноса за пределы объема экосистемы без нарушения ее нормального функционирования.

Суммарное удаление (Аi) загрязняющего вещества из морской экосистемы можно записать в виде

, (1)

где Ki — коэффициент запаса, отражающий экологические условия протекания процесса загрязнения в различных зонах морской экосистемы; τi — время пребывания загрязняющего вещества в морской экосистеме.

Это условие соблюдается при , где С0i — критическая концентрация за­грязняющего вещества в морской воде. Отсюда ассимиляционная емкость может быть оценена по формуле (1) при ;.

Все величины, входящие в правую часть уравнения (1) можно непосредственно измерить по данным, полученным в процессе долгопериодных комплексных исследований состояния морской экосистемы. При этом последовательность определения ассимиляционной емкости морской экосистемы к конкретным загрязняющим веществам включает три основных этапа: 1) расчет балансов массы и времени жизни загрязняющих веществ в экосистеме, 2) анализ биотического баланса в экосистеме и 3) оценка критических концентраций воздействия загрязняющих веществ (или экологических ПДК) на функционирование биоты.

Для решения вопросов экологического нормирования антропо­генных воздействий на морские экосистемы расчет ассимиляци­онной емкости наиболее репрезентативен, поскольку он учитывает ассимиляционной емкости предельно допустимая экологическая нагрузка (ПДЭН) водоема ЗВ рассчитывается достаточно просто. Так, при стационарном режиме загрязнения водоема ПДЭН будет равна ассимиляционной емкости.

  1. Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря

На примере Балтийского моря были рассчитаны значения ассимиляционной емкости для ряда токсичных металлов (Zn, Сu, Pb, Cd, Hg) и органических веществ (ПХБ и БП) (Израэль, Цыбань, Вентцель, Шигаев, 1988).

Средние концентрации токсичных металлов в морской воде оказались на один-два порядка меньше их пороговых доз, а концентрации ПХБ и БП только на порядок меньше. Отсюда коэффициенты запаса для ПХБ и БП оказались меньше, чем для металлов. На первом этапе работы авторы расчета, используя материалы долгопериодных экологических исследований в Балтийском море и литературные источники, определили концентрации загрязняющих веществ в компонентах экосистемы, скорости биоседиментации, потоки веществ на границах экосистемы и активность микробного разрушения органических веществ. Все это позволило составить балансы и рассчитать время «жизни» рассматриваемых веществ в экосистеме. Время «жизни» металлов в экосистеме Балтики оказалось достаточно малым для свинца, кадмия и ртути, несколько большим для цинка и максимальным для меди. Время «жизни» ПХБ и бенз(а)пирена составляет 35 и 20 лет, что определяет необходимость введения системы генетического мониторинга Балтийского моря.

На втором этапе исследований было показано, что наиболее чувствительным к загрязняющим веществам и изменениям экологической обстановки элементом биоты являются планктонные микроводоросли, а следовательно, в качестве процесса — «мишени» следует выбрать процесс первичного продуцирования органического вещества. Поэтому здесь применяются пороговые дозы загрязняющих веществ, установленные для фитопланктона.

Оценки ассимиляционной емкости зон открытой части Балтий­ского моря показывают, что существующий сток цинка, кадмия и ртути соответственно в 2, 20 и 15 раз меньше минимальных значений ассимиляционной емкости экосистемы к этим металлам и не представляет прямой опасности первичному продуцированию. В то же время поступление меди и свинца уже превышает их ассимиляционную емкость, что требует введения специальных мер по ограничению стока. Современное поступление БП еще не достигло минимального значения ассимиляционной емкости, а ПХБ превышает ее. Последнее говорит о настоятельной необходимости дальнейшего снижения сбросов ПХБ в Балтийское море.


Лекция № 14

Геоинформационные системы как инструмент для комплексной оценки состояния окружающей среды

Основные вопросы, рассматриваемые на лекции:

1. Представление о ГИС как об инструментальном средстве

2. Основные категории средств и подходов, применяемых при решении пространственных проблем с помощью ГИС

3. Элементы моделей пространственных данных, их взаимоотношения. Модели данных и их разновидности

4. Задачи, свойства и принципы разработки экоинформационной системы урбанизированных территорий.

5. Обзор ГИС городов экологической направленности

6. Опыт разработки геоэкологической ГИС г. Саранска