Магазины электрических величин
Вид материала | Документы |
- Рабочей программы дисциплины Электроэнергетические системы и сети по направлению подготовки, 21.71kb.
- Отчет по лабораторной работе должен содержать: наименование работы и номер, схемы, 365.83kb.
- Экзаменационные вопросы по курсу «Электротехника и электроника», 23.91kb.
- Бизнес-план магазина товаров для детей Содержание, 138.19kb.
- 1. Основные понятия и обозначения электрических величин и элементов электрических цепей., 277.03kb.
- Цифровой вольтметр щ-304, 137.06kb.
- Телемеханики, 26.01kb.
- Отдел метрологического обеспечения измерений электрических величин, 42.58kb.
- Курсовая работа по курсу «основы физических измерений», 226.86kb.
- Теория электрических цепей (часть, 63kb.
В обобщённом Гука законе вводится ещё два М. у.— постоянные Ламе и , причём в изотропном материале независимых М. у. только два (напр., и или Е и v). Между М. у. имеют место равенства:

427
Для большинства металлов v0,3. Значение v=0,5 соответствует механически несжимаемому материалу. В стали E2•106 кгс/см2, G8•105 кгс/см2; в меди E0,9•106 кгс/см2, G4•105 кгс/см2; в алюминии E0,75•106 кгс/см2, G2,7•105 кгс/см2; в граните E0,8•106 кгс/см2, G3•105 кгс/см2.
В анизотропном материале упругие
св-ва определяются 21 М. у. В ряде материалов (монокристаллы, направленно армированные композиты и т.п.) имеются плоскости симметрии упругих св-в. При этом число независимых М. у. уменьшается.
М. у. зависят от темп-ры; на величину М. у. для данного материала влияют: термообработка, радиоактивное облучение, скорость деформации и др. внеш. факторы.
• Беляев Н. М., Сопротивление материалов, 9 изд., М., 1954; Лехницкий С. Г., Теория упругости анизотропного тела, М.—Л., 1950; Фридман Я. В., Механические свойства металлов, 3 изд. ч 1—2 М., 1974.
В. С. Ленский.
МОДУЛЯЦИЯ (от лат. modulatio — мерность, размеренность), изменение по заданному закону во времени параметров, характеризующих к.-л. стационарный физ. процесс. Примеры М.: изменение по определ. закону амплитуды, частоты или фазы гармонич. колебания для внесения в колебат. процесс требуемой информации (см. Модуляция колебаний); изменение во времени интенсивности электронного потока в электронно-лучевом осциллографе, осуществляемое с помощью спец. электрода (модулятора) и приводящее к соответствующему изменению яркости свечения экрана трубки; управление яркостью света с помощью поляризующих устройств и Керра ячейки; изменение скорости эл-нов в электронном потоке в клистроне и др. В этих случаях один или неск. параметров, характеризующих стационарный процесс (напр., интенсивность, амплитуда, скорость, частота) изменяются во времени в соответствии с модулирующим воздействием. Иногда говорят о пространств. М.— изменении параметров стационарного процесса в пр-ве. В нелинейных колебат. и волн. системах возможно спонтанное возникновение М. (автомодуляция).
В. В. Мигулин.
МОДУЛЯЦИЯ КОЛЕБАНИЙ, медленное по сравнению с периодом колебаний изменение амплитуды, частоты или фазы колебаний по определ. закону. Соответственно различаются амплитудная, частотная и фазовая М. к. (рис. 1). Возможна и смешанная модуляция (напр., амплитудно-фазовая). При любом способе М. к. скорость изменения амплитуды, частоты или фазы должна быть достаточно малой, чтобы за период Т колебания модулируемый параметр почти не изменился.
М. к. применяется для передачи информации с помощью эл.-магн. волн радио- или оптич. диапазонов, а также акустич. волн. «Переносчиком» сигнала явл. синусоидальные колебания высокой частоты со. Амплитуда, частота или фаза этих колебаний, а в случае света и поляризация модулируются передаваемым сигналом (см. Модуляция света).

Рис. 1. а — гармонич. колебания несущей частоты; б — модулирующий сигнал; в — амплитудно-модулиров. колебание; г —частотно-модулиров. колебание; д — фазово-модулиров. колебание.
В простейшем случае модуляции амплитуды А синусоидальным сигналом модулиров. колебание (рис. 2) может быть записано в виде:
х=А0 (1+msinl)sin(t+). (1)
Здесь А0 — амплитуда, — частота исходного колебания, — частота модуляции; величина m, наз.

Рис. 2. Колебание, модулированное по амплитуде синусоидальным сигналом.
г л у б и н о й м о д у л я ц и и, характеризует степень изменения амплитуды:

Частота модуляции характеризует скорость изменения амплитуды колебаний. Эта частота должна быть во много раз меньше, чем несущая частота со. Модулиров. колебание уже не явл. строго синусоидальным. Амплитудно-модулиров. колебание представляет собой сумму трёх синусоидальных колебаний с частотами , +, -. Частота наз. несущей. Две остальные частоты наз.
б о к о в ы м и ч а с т о т а м и (сателлитами). Амплитуда каждой из них равна mА0/2.
Любая передающая радиостанция, работающая в режиме амплитудной модуляции, излучает не одну частоту, а спектр частот. В простейшем случае М. к. синусоидальным сигналом этот спектр содержит лишь три составляющие — несущую и две боковые. Если же модулирующий сигнал не синусоидальный, а более сложный, то вместо двух боковых частот в спектре модулиров. колебания будут две б о к о в ы е п о л о с ы, частотный состав к-рых определяется частотным составом модулирующего сигнала. Поэтому каждая передающая станция занимает определённый частотный интервал. Во избежание помех несущие частоты разл. станций должны отстоять друг от друга на расстоянии, большем, чем сумма боковых полос. Ширина боковой полосы зависит от хар-ра передаваемого сигнала; для радиовещания — 10 кГц, для телевидения — 6 МГц. Исходя из этих величин, выбирают интервал между несущими частотами разл. станций. Для получения амплитудно-модулиров. колебания колебание несущей частоты и модулирующий сигнал частоты подают на спец. устройство — м о д у л я т о р.
В случае частотной модуляции синусоидальным сигналом частота колебаний меняется по закону:
l =0+cost, (3)
где — т. н. д е в и а ц и я ч а с т о т ы. При частотной модуляции полоса частот модулиров. колебания зависит от величины =/, наз. и н д е к с о м ч а с т о т н о й м о д у л я ц н и. При <<1 справедливо приближённое соотношение:
хA0(sint+sintcost). (4)
В этом случае частотно-модулиров. колебание, так же как и амплитудно-лодулированное, состоит из несущей частоты и двух спутников с частотами + и -. Поэтому при малых полосы частот, занимаемые шплитудно-модулированными и частотно-модулиров. сигналами, одинаковы. При больших индексах спектр боковых частот значительно увеличивается. Кроме колебаний с частотами ± появляются колебания, частоты к-рых равны ±2, ±3 [ т. д. Полная ширина полосы частот, занимаемая частотно-модулиров. колебанием с девиацией и частотой модуляции (с точностью, достаточной для практич. целей), может считаться равной 2+2. т. е. шире, ;ем при амплитудной модуляции.
Преимуществом частотной модуляции перед амплитудной в технике вязи явл. большая помехоустойчивость. Это кач-во частотной модуляции проявляется при >>1, т. е. когда полоса частот, занимаемая частотно-
428
модулиров. сигналом, во много раз больше 2. Поэтому частотно-модулиров. колебания используются для высококачеств. передачи сигналов в диапазоне УКВ, где на каждую радиостанцию выделена полоса частот, в 15—20 раз большая, чем в диапазоне длинных, средних и коротких радиоволн, на к-рых работают радиостанции с амплитудной модуляцией. Частотная модуляция применяется также для передачи звук. сопровождения телевизионных программ. Частотно-модулиров. колебания могут быть получены изменением частоты задающего генератора.
В случае фазовой модуляции модулиров. колебание имеет вид:
х=А0sin(t +sint). (5)
Такое колебание тождественно частотно-модулированному с синусоидальной модуляцией частоты по закону (3), причём совпадает с индексом модуляции р. О фазовой модуляции говорят в случае, если остаётся неизменным при изменении частоты модулирующего сигнала , а о частотной, когда при этом не изменяется =. В случае несинусоидального модулирующего сигнала различие между частотной и фазовой М. к. более чётко выражено (рис. 1, г, д).
Во мн. случаях модулирующий сиг-пал имеет вид импульса, а результирующий — цуга колебаний высокой

Рис. 3 Радиоимпульсы.
частоты или радиоимпульса (рис. 3). Радиоимпульсы используются, напр., в радиолокации, иногда с дополнит. частотной модуляцией несущего сигнала. В многоканальных системах связи в кач-ве переносчика информации используется не гармонич. колебание, а периодич. последовательность радиоимпульсов. Такая последовательность определяется четырьмя параметрами: амплитудой, частотой следования, длительностью (шириной) и фазой. В соответствии с этим возможны четыре типа импульсной модуляции: амплитудно-импульсная, частотно-импульсная, широтно-импульсная, фазово-импульсная. Импульсная модуляция обладает повышенной помехоустойчивостью по сравнению с модуляцией непрерывной синусоидальной несущей, зато полоса частот, занимаемая передающей радиостанцией с импульсной модуляцией во много раз шире, чем при амплитудной модуляции (см. Импульсная модуляция).
Модуляция используется не только для регулярных, но и для случайных сигналов, напр. в радиоастрономии модулируются шумовые сигналы.
• Харкевич А. А., Основы радиотехники, ч. 1, М., 1962; Гольдман С., Гармонический анализ, модуляция и шумы, пер. с англ., М., 1951; Р ы т о в С. М., Модулированные колебания и волны, «Тр. Физического ин-та АН СССР», 1940, т. 2, в. 1; 3 е р н о в Н. В., Карпов В. Г., Теория радиотехнических цепей, 2 изд., Л., 1972.
В. Н. Парыгин.
МОДУЛЯЦИЯ СВЕТА (модуляция оптического излучения), изменение во времени по заданному закону амплитуды (интенсивности), частоты, фазы или поляризации колебаний оптического излучения. Применяется для передачи информации с помощью оптич. сигналов или для формирования световых потоков с определ. параметрами. В зависимости от того, какая хар-ка подвергается изменению, различают амплитудную, фазовую, частотную или п о л я р и з а ц и о н н у ю М. с. Для излучений видимого и ближнего ИК диапазонов (1014—8•1014 Гц) возможны частоты модуляции с верх. пределом до 1011—1012 Гц. Естественная М. с. происходит при испускании света элем. излучателями (атомами, ионами); независимость испускания такими излучателями фотонов и различие в частоте последних приводит к тому, что излучение содержит набор частот и флуктуирует по амплитуде, т. е. является амплитудно-частотно-модулпрованным. Естеств. частотная М. с. происходит также при неупругом рассеянии света на внутримолекулярных колебаниях (см. Комбинационное рассеяние света) и на упругих волнах в конденсиров. средах (см. Мандельштама — Бриллюэна рассеяние). В обоих случаях рассеянный свет содержит частоты, отличные от частоты падающего света.
М. с., при к-рой преобразование излучения происходит в процессе его формирования непосредственно в источнике оптич. излучения, наз. в н у т р е н н е й М. с. При в н е ш н е й М. с. параметры излучения изменяют после его выхода из источника с помощью модуляторов света. Они характеризуются линейностью модуляц. хар-ки, динамич. диапазоном модулируемых частот, широкой полосой пропускания, потребляемой мощностью, световыми потерями. Т. к. регистрация излучения, модулированного по частоте, фазе или поляризации, сопряжена с технич. трудностями, то на практике все эти виды М. с. преобразуют в амплитудную модуляцию либо непосредственно в модуляторе, либо с помощью спец. устройств, помещаемых перед приёмником излучения.
Простейший модулятор для амплитудной М. с.— устройство, обеспечивающее периодич. прерывание светового потока. С этой целью используют колеблющиеся и вращающиеся заслонки, призмы, зеркала, а также вращающиеся диски с отверстиями, растры. Наиболее широко распространены вращающиеся диафрагмы с определ. сочетанием прозрачных и непрозрачных элементов. При вращении диафрагмы световой поток прерывается с частотой, равной произведению
числа модулируемых элементов на частоту вращения диафрагмы.
М. с. осуществляют также на основе физ. эффектов, протекающих при распространении световых потоков в разл. средах (электрооптич., магнитооптич., упругооптич. эффекты). Для такой модуляции применяют управляемый двулучепреломляющий элемент из материала, обладающего естественной или наведённой анизотропией. Внеш. управляющее поле (напр., электрич. поле или поле упругих напряжений) приводит к изменению оптич. хар-к среды. Широкое распространение получили модуляторы на основе Поккельса эффекта, в к-рых фазовый сдвиг между обыкновенным и необыкновенным лучами линейно зависит от величины напряжённости электрич. поля. В модуляторах на основе Керра эффекта разность фаз колебаний обыкновенного и необыкновенного лучей пропорц. квадрату напряжённости электрич. поля. Для получения амплитудной М. с. электрооптич. в-во обычно помещают между скрещёнными поляризаторами. Важным св-вом электрооптич. эффекта явл. его малая инерционность, позволяющая осуществить М. с. вплоть до частот 1012 Гц. В электрооптич. модуляторах ослабление модулирующего сигнала не зависит от интенсивности модулируемого света, и потому для увеличения глубины модуляции используют многократное прохождение света через один и тот же модулирующий сигнал. Примером может служить модулятор на основе интерферометра Фабри — Перо, заполненный электрооптич. средой.
С целью увеличения объёма информации, переносимой световым лучом, используют п р о с т р а н с т в е н н у ю М. с., различную в каждой точке поперечного сечения пучка света. Осн. элемент пространств. модулятора света — кристалл, на поверхности к-рого записывается определ. потенциальный рельеф; проходящий через кристалл пучок света оказывается промодулированным в каждой точке поперечного сечения в соответствии с потенциальным рельефом, записанным на кристалле, при этом модуляция может быть амплитудной и фазовой.
Из многочисл. магнитооптич. эффектов для М. с. наибольшее применение нашёл Фарадея эффект в прозрачных в-вах. Периодически меняющееся магн. поле приводит к периодич. изменению угла вращения плоскости поляризации света, прошедшего через магнитооптич. элемент, помещённый в магн. поле. Угол поворота плоскости поляризации пропорц. длине пути света в в-ве и при достаточной прозрачности среды может быть сделан сколь угодно большим. Важной особенностью магнитооптич. модуляторов явл. постоянство коэфф. удельного
429
вращения плоскости (Верде постоянная) в ИК диапазоне длин волн. Это повышает конкурентоспособность магнитооптич. устройств при больших длинах волн оптич. излучения по сравнению с электрооптическими, в к-рых управляющее напряжение линейно возрастает с увеличением длины волны света. В магнитооптич. модуляторах света удаётся достичь глубины модуляции (см. Модуляция колебаний) 40% на частотах до 108 Гц.
Для М. с. используют также искусств. оптич. анизотропию, к-рая возникает в иек-рых изотропных тв. телах под воздействием упругих напряжений (фотоупругость). При прохождении плоскополяризованного излучения через фотоупругую среду с наведённым двулучепреломлением излучение становится эллиптически поляризованным. Помещая такую среду между скрещенными поляризатором и анализатором, наблюдают амплитудную М. с., аналогичную модуляции в электрооптич. средах. Применение таких модуляторов особенно целесообразно в ИК диапазоне, т. к. разность фаз колебаний необыкновенного и обыкновенного лучей ~n3, где n — показатель преломления, равный 4—6 для в-в, прозрачных в этом диапазоне.
В основе работы акустооптич. модуляторов лежит явление дифракции света на ультразвуке (см. также Фотоакустические явления).
Методы, основанные на изменении поглощения света средой, обеспечивают лишь амплитудную М. с. При этом обязательно имеют место потери световой энергии в модулирующем устройстве. Электрич. управление поглощением света (полупроводниками) легко может быть получено либо при изменении концентрации свободных носителей или их подвижности, либо за счёт сдвига края полосы поглощения (Франца — Келдыша эффект).
Внутр. М. с. осуществляют, используя для питания электрич. источников света переменное или пмпульсно-периодич. напряжение. Лампы накаливания при этом из-за своей инерционности дают заметную глубину модуляции лишь до частот ~102 Гц; газоразрядные источники света менее инерционны и допускают модуляцию до частот 105 Гц (при глубине модуляции 50— 70%).
Появление лазеров вызвало интенсивное развитие методов внутр. М. с., основанных на управлении когерентным излучением за счёт изменения параметров лазера. При этом многие устройства, размещаемые внутри оптического резонатора лазера, применяются как внеш. модуляторы. Используя разл. способы внутр. модуляции, получают любой вид М. с.: амплитудный, частотный, фазовый и поляризационный. Управление частотой излучения лазера достигается путём изменения добротности оптич. резонатора лазера, напр. изменения оптич. длины резонатора. С этой целью одно из зеркал резонатора закрепляют либо на магнитострикционном стержне (см. Магнитострикционный преобразователь), либо на пьезоэлементе и изменяют длину резонатора синхронно с модулирующим напряжением. Тот же эффект может быть достигнут путём изменения показателя преломления среды, заполняющей резонатор. Для этого внутрь резонатора помещают электрооптич. кристалл. Частотную модуляцию излучения лазера можно получить также при наложении на активную среду магн. или электрич. полей (см. Зеемана эффект, Штарка эффект), под действием к-рых происходит расщепление и смещение рабочих уровней атомов, ответственных за генерацию когерентного излучения. Изменяя величину коэфф. усиления, получают амплитудную модуляцию излучения лазера. Для этого воздействуют на разность населённостей активной среды, либо используя вспомогат. возбуждение, приводящее к перераспределению населённостей. Амплитудная модуляция излучения может быть получена и при помощи модуляции тока разряда газовых или ПП лазеров, работающих в непрерывном режиме. Одним из методов управления когерентным излучением с целью получения импульсного излучения явл. модуляция величины обратной связи лазера, т. е. коэфф. отражения зеркал резонатора. С этой целью используют резонатор, одно из зеркал к-рого вращается с большой скоростью, и поэтому условия генерации выполняются лишь в короткие промежутки времени. Вместо зеркал часто используют вращающуюся призму полного внутр. отражения. Изменение величины обратной связи можно также получить, заменяя одно из зеркал на интерферометр Фабри — Перо. Коэфф. отражения такого резонатора зависит от расстояния между зеркалами, меняя к-рое, можно модулировать интенсивность излучения и получать т. н. гигантские импульсы (см. Лазер). Наконец, излучение лазеров можно модулировать, изменяя добротность оптич. резонатора путём введения потерь, величина к-рых управляется внеш. сигналом. Для этого используют модуляторы на основе электрооптич. и фотоупругих сред. Для т. н. пассивного управления добротностью используют метод, основанный на введении в резонатор элементов (растворов, стёкол), прозрачность к-рых изменяется под действием светового излучения. Такой вид модуляции (а в т о м о д у л я ц и и) широко используется для генерирования импульсов когерентного излучения нано- и пикосекундного диапазонов. Модуляторы света широко применяются в технике и науч. исследованиях, напр. в оптической связи, в вычислит. технике.
• Мустель Е. Р., П а р ы г и н В. Н., Методы модуляции и сканирования света, М., 1970; Модуляция и отклонение оптического излучения, М., 1967.
Л. Н. Капорский.
МОДЫ (от лат. modus — мера, образ, способ, вид), типы колебаний (нормальные колебания) в распределённых колебат. системах (см. Объёмный резонатор, Оптический резонатор) или типы волн (нормальные волны) в волноводных системах и волновых пучках (см. Радиоволноводы, Квазиоптика). Термин «М.» стал употребляться также для любого волнового поля (вне его источников), обладающего определ. пространств. структурой (симметрией). Так появились понятия: М. излучения лазера, «утекающая» М., поверхностная М., М. «шепчущей галереи», экспоненциально спадающая М., селекция М. и т. д. 9 См. лит. при статьях Нормальные колебания, Нормальные волны, Лазер.
М. А. Миллер, Г. В. Пермитин.
1>