Хранилищ газа и нефти

Вид материалаМетодические указания

Содержание


Методические указания
Методические указания
Методические указания
Методические указания
Подобный материал:
1   2   3   4   5   6   7   8
Тема 1.1. Техническая документация по правилам эксплуатации линейной части магистральных газонефтепроводов

Студент д о л ж е н:

з н а т ь: названия и содержание документов по строительству, эксплуата­ции и ремонту газонефтепроводов;

v м е т ь: составлять и читать документы по эксплуатации и ремонту га­зонефтепроводов.

Строительные нормы и правила, руководящие технические материалы, правила технической эксплуатации магистральных газонефтепроводов и другие нормативные документы по правилам приема трубопроводов в эксплуатацию, по организации ремонтно-технического обслуживания.

Методические указания

Все работы по ТО производятся в соответствии со СНиП 2.05.06-85*, СНиП III-42-80*, В своей практической деятельности руководствуются Прави­лами технической эксплуатации магистральных нефтепрово­дов, Прави­лами технической эксплуатации магистральных газопроводов, Положением о техническом обслуживании и ремонте ли­нейной части магистральных газонефтепроводов и регламентами, рассматривающими вопросы организации и планирования работ по ТО линейной части, включая период консервации и режим содержания в безопасном состоянии

Вопросы для самоконтроля

1. ОНТП 51-1-85.Общесоюзные нормы технологического проектирова­ния. Магистральные трубопроводы.

2. СНиП 2.05.06 - 85*. Магистральные трубопроводы.

3. СНиП Ш-42-80*. Магистральные трубопроводы.

4. Прави­ла технической эксплуатации магистральных нефтепрово­дов

5. Прави­ла технической эксплуатации магистральных газопроводов


Тема 1.2. Линейно-эксплуатационная служба магистральных газонефтепроводов

Студент д о л ж е н:

з н а т ь: функции линейно-эксплуатационной службы (ЛЭС), ее состав;

права и обязанности работников ЛЭС; оснащенность машинами и механизма­ми.

Функции, права и обязанности работников линейно-эксплутационной службы, организационная структура, оснащенность машинами и механизмами; средства связи и оповещения при авариях на линейной части трубопроводов

Методические указания

Под техническим обслуживанием (ТО) объекта понимают комплекс операций по поддержанию работоспособности или исправности данного объекта.

Техническое обслуживание линейной части МН включает: патрулирование трассы нефтепровода — визуальные на­блюдения для своевременного обнаружения опасных ситуа­ций, угрожающих целостности и безопасности МН и безо­пасности окружающей среды; регулярные осмотры и обследования всех сооружений с применением технических средств с целью определения их технического состояния.

Контроль технического состояния трубопровода осуществляется специальными целевыми проверками, обследования­ми, осмотрами, измерениями с применением средств техни­ческой диагностики, а также при проведении плановых и ре­монтных работ.

Все работы по ТО производятся в соответствии с Прави­лами технической эксплуатации магистральных нефтепрово­дов, положением о техническом обслуживании и ремонте ли­нейной части магистральных нефтепроводов и регламентами, рассматривающими вопросы организации и планирования работ по ТО линейной части включая период консервации и режим содержания в безопасном состоянии

Основная работа по техническому обслуживанию линей­ной части производится линейной эксплуатационной службой (ЛЭС), которая является структурным подразделением ли­нейно-производственной диспетчерской службы (ЛПДС) нефтеперекачивающей станции (НПС). ЛЭС подчиняется на­чальнику (заместителю начальника) ЛПДС (НПС). Функцио­нально ЛЭС подчиняется отделу эксплуатации нефтепроводного управления. За ЛЭС закрепляется участок трассы маги­стрального нефтепровода протяженностью 200 — 250 км в обычных условиях и 80—100 км в болотистых и горных усло­виях.

На ЛЭС возлагаются следующие основные задачи: ение необходимого комплекса профилактических мероприятий, обеспечивающих сохранность и работоспособ­ность оборудования и сооружений линейной части МН; разработка перспективных и текущих планов работ ЛЭС и отчетность по их выполнению; содержание линейной части в соответствии с требования­ми Правил технической эксплуатации магистральных нефте­проводов и Правил охраны магистральных нефтепроводов.

Вопросы для самоконтроля
  1. Какие виды работ включает в себя техническое обслуживание линейной части трубопроводов
  2. Функции, права и обязанности работников линейно-эксплутационной службы
  3. Основные задачи, возлагаемые на ЛЭС.
  4. Зона обслуживания ЛЭС


Тема 1.3. Эксплуатация магистральных газонефтепроводов

Студент д о л ж е н:

з н а т ь: правила эксплуатации магистральных трубопроводов, сущность гидратов и методы борьбы с ними, вредное воздействие и способы улавливания конденсата;

у м е т ь: выполнять расчеты количества реагентов для ликвидации гид­ратов в магистральных газонефтепроводах (MГ), количества конденсата, чер­тить схему конденсатосборника.

Гидраты, их сущность, причины образования и вредное воздействие на MГ.

Обнаружение гидратообразования в МГ. Способы борьбы, оборудование, реагенты. Расчет реагентов.

Источники и вредное воздействие конденсата в МГ. Использование конденсата, способы улавливания. Оборудование. Схема обвязки. Расчет количества уловленного конденсата.

Правила технической эксплуатации последовательной перекачки нефте­продуктов, высоковязких нефтепродуктов; учет нефтепродуктов на нефтебазе

Методические указания

В процессе эксплуатации магистрального газопровода при недо­статочно эффективной осушке газа может произойти полная или частичная его закупорка в результате отложения кристаллогидра­тов, образующихся при наличии влаги в газе и при определенных давлении и температуре. Гидраты углеводородных газов предста­вляют собой белые кристаллы, похожие на снег, а при уплотнении напоминают лед. По своей структуре кристаллогидраты — соеди­нения нескольких молекул газа и воды. Однако такое соединение не является стабильным и при определенных условиях, например при понижении давления или повышении температуры, легко раз­лагается на газ и воду. Данной температуре газа соответствует определенное давление, при котором начинают образовываться кристаллогидраты.

На образование гидратов, кроме температуры и давления, влияет состав газа и его насыщенность парами воды. Поэтому на ра­боте газопровода отрицательно сказывается недостаточная осушка газа и плохая продувка газопровода перед сдачей его в эксплуата­цию, а также отсутствие в пониженных местах дренажных устройств (конденсатосборников и продувочных патрубков) или нерегулярное удаление из них скапливающейся жидкости. Засорение газопрово­дов посторонними предметами, влагой и пылью, которые уменьшают площадь сечения газопровода в пониженных местах (где они скапли­ваются), также приводит к образованию гидратов вследствие возни­кающего перепада давления и снижения температуры газа.

Места возможного гидратообразования в газопроводе определяют путем сопоставления графика падения давления и снижения темпе­ратуры данного газопровода с гра­фиком температуры образования ги­дратов. Падение температуры приво­дит к уменьшению упругости водяных паров и влагоемкости газа, что в свою очередь сопряжено с выпаде­нием капельной жидкости (воды вместе с газовым конденсатом), об­разующей гидраты.

Поскольку при движении газа по газопроводу температура его падает быстрее, чем давление, более вероятно образование гидратов на начальных, головных участках газопровода на расстоянии 10—60 км. На участках, где вследствие падения давления газ становится ненасыщенным (т. е. пар­циальное давление пара в газовой смеси меньше упругости паров ги­драта), гидраты не образуются, хотя температура их образования может быть и выше температуры газопро­вода. Практически при сниже­нии точки росы газа на 5— 7° С ниже температуры в газо­проводе исключается образова­ние ристаллогидратов, что со­ответствует примерно 60—70% относительной влажности газа.

Для предупреждения гидратообразования необходимо устранить хотя бы одно из основных условий существования гидратов: высокое давление, низкую температуру или свободную влагу в газе.

В соответствии с этим предупреждение гидратообразования осуществляют вводом ингибиторов в поток газа, осушкой газа от паров воды, поддержанием температуры газа выше температуры гидратообразования, поддержанием давления ниже давления гидратообразования.

Однако, наиболее эффективный для предупреждения гидратообразования – метод ввода ингибиторов в поток газа.

На практике в качестве ингибиторов широко используют электролиты, спирты, гликоли. Растворяясь в воде, имеющейся в потоке газа, ингибиторы снижают давление паров воды. При этом, если гидраты и образуются, то при более низкой температуре. Ввод ингибиторов при уже образовавшихся гидратах снижает давление паров воды, равновесие гидраты - вода нарушается, упругость паров воды над гидратами оказывается большей, чем над водным раствором, что и приводит к их разложению. В качестве антигидратных ингибиторов широкое применение находит хлористый кальций и диэтиленгликоль (ДЭГ) и др.

Метод последовательной перекачки нефтей и нефтепродуктов заключается в том, что различные по качеству углеводородные жидкости отдельными партиями определенных объемов перекачиваются по одному трубопроводу.

Широкое внедрение последовательной перекачки вызвано особенностями работы трубопроводов. В чем они заключаются?

Во-первых, нефти, добываемые в пределах даже одного место­рождения, имеют различный химический состав. Разные по качеству нефти на мировом рынке про­даются по разным ценам. Строить же для каждой нефти отдельный трубопро­вод экономически неоправданно. Более предпочтителен вариант их последовательной (друг за другом) перекачки по одному трубопроводу.

Во-вторых, продукты нефтепереработки (бензины, керосины, дизельные топлива поставляются потребителям как правило по трубопроводам. Обычно объемы отдельно взятых продуктов либо недостаточны для строительства самостоятельных трубопроводов, либо позволяют сооружать лишь маломощные нефтепродуктопроводы для каждого нефтепродукта в отдельности. Поэтому, если направление транспортировки нефтепродуктов совпадает, экономически целесообразнее построить один трубопровод большого диаметра и различные нефтепродукты перекачивать по нему последовательно.

В-третьих, в условиях нефтебаз последовательная перекачка неизбежна, т.к. практически невозможно построить отдельные трубопроводы для каждого нефтепродукта.

При последовательной перекачке различные нефтепродукты поступают с НПЗ в резервуары головной перекачивающей стан­ции практически одновременно, а их перекачка производится последовательно — в виде отдельных следующих друг за другом партий.

Периодически повторяющаяся очередность следования неф­тепродуктов в трубопроводе называется циклом последователь­ной перекачки.

Партии нефтепродуктов в цикле формируются с учетом их состава, свойств и качества. Нормами проектирования рекомен­дуется следующая последовательность нефтепродуктов в цикл: дизельное топливо; топливо для реактивных двигателей; керосин или топливо печное бытовое; автомобильный бензин А-76; автомобильный бензин АИ-93; автомобильный бензин АИ-95.

Таким образом, в нефтепродуктопроводе, как правило, одно­временно находится несколько партий различных по свойствам нефтепродуктов. Это необходимо учитывать при гидравличес­ком расчете трубопроводов.

Особенностью последовательной перекачки является образо­вание некоторого количества смеси в зоне контакта двух следую­щих друг за другом нефтепродуктов. Причиной смесеобразова­ния является неравномерность осредненных местных скоростей по сечению трубопровода. Кроме того, некоторое количество смеси образуется при переключении системы задвижек на на­чальном пункте нефтепродуктопровода в период смены нефте­продуктов (такая смесь называется первичной).

Для уменьшения количества смеси иногда применяются специальные устройства — разделители, помещаемые в зону контакта разносортных нефтепродуктов и двигающиеся совместно с ними по нефтепродуктопроводам. Кроме того, на конечном пункте предусматриваются мероприятия по исправлению и реализации получающейся смеси нефтепродуктов.

Опыт эксплуатации магистральных трубопроводов, по ко­торым последовательно перекачиваются различные нефти или нефтепродукты, показывает, что объем смеси при прямом кон­тактировании равен 0,5... 1 % объема трубопровода. Поскольку смесь является некондиционным продукте» то необходимо всемерно стремиться к уменьшению ее объема.

На образование смеси оказывают влияние скорость перекачки, остановки перекачки, конструктивные особенности обвязки перекачивающих станций и резервуарных парков, объем партий, соотношение вязкостей и плотностей перекачиваемых жидкостей.

При турбулентном режиме перекачки объем образующейся смеси значительно меньше, чем при ламинарном. Поэтому однозначно последовательную перекачку необходимо осуществлять при турбулентном режиме. Выбор скоростей перекачки при этом лимитируется следующими сооб­ражениями. Если скорость низкая, то может произойти расслое­ние потока и объем смеси возрастет. Чем больше скорость перекачки, тем объем образующейся смеси меньше

Вопросы для самоконтроля
  1. Гидраты, их сущность, условия образования.
  2. Методы обнаружения гидратообразования в МГ.
  3. Способы борьбы с гидратообразованием, оборудование, реагенты.
  4. Источники и вредное воздействие конденсата в МГ
  5. Способы улавливания конденсата
  6. Сущность последовательной перекачки нефтепродуктов
  7. Методы уменьшения количества смеси


Тема 1.4. Зашита от коррозии магистральных газонефтепроводов,

Экс­плуатация установок электрохимзащиты

Студент д о л ж е н:

з н а т ь: виды и способы защиты от коррозии, конструкцию пассивной защиты, нанесение ее на трубопровод; сущность, устройство, принцип дейст­вия, правила эксплуатации установок электрохимзащиты (ЭХЗ);

у м е т ь: делать расчеты установок ЭХЗ, чертить схему зашиты

Основы электрохимической коррозии металлов и сплавов. Процессы об­разования микро- и макроэлектрических элементов, химические реакции, про­текающие при этом. Понятие о водородном показателе почв, их коррозионная активность Электрохимический ряд напряжений металлов, электроды сравнения

Собственный потенциал трубопровода, его изменение в пространстве и во времени.

Биокоррозия и борьба с ней. Антикоррозионные покрытия и консервационные смазки: типы, марки покрытий и смазок, сроки службы конструкций по­крытий различных типов, нанесение покрытий на трубопровод; коррозия блуж­дающими токами и борьба с ней, источники блуждающих токов, их коррозион­ная активность; принципиальные схемы электрических дренажей, их оборудо­вание.

Протекторная защита трубопроводов: принцип работы протекторных ус­тановок, конструкции протекторов, их подключение к трубопроводу и оборудо­вание. Преимущества и недостатки протекторных установок.

Станции катодной защиты (СКЗ), принцип действия, оборудование, при­боры и конструкции СКЗ различных типов, их преимущества и недостатки

Правила эксплуатации установок электрохимзащиты.

Методические указания

Защита подземных трубопроводов от почвенной коррозия может быть активной и пассивной. К активным средствам защиты подземных трубопроводов от наружной коррозии относятся электрические методы, катодная и протекторная защита. При пассивной защите на наружную поверхность трубопроводов наносят покрытия и изоляцию, при активной – устраняют причины, вызывающие коррозию.

В состав средств электрохимической защиты металлических сооружений от коррозии и блуждающих то­ков входят: устройства по созданию катодной поляризации (катодная и протекторная защиты) на подземных металлических со­оружениях с сопутствующими; станции дренажной защиты (СДЗ), кабельные линии под­ключения к источнику блуждающих токов.

Принята следующая периодичность проверки работы средств ЭХЗ: 2 раза в год на установках, обеспеченных дистанционным контролем, и на установках протекторной защиты; 2 раза в месяц на установках, не обеспеченных дистанци­онным контролем; 4 раза в месяц на установках, находящихся в зонах дейст­вия блуждающих токов и не обеспеченных дистанционным контролем.

При проверке работы установок ЭХЗ измеряют и фикси­руют следующие показатели: напряжение и ток на выходе станций катодной защиты (СКЗ), потенциал в точке дренажа; потенциал и ток протекторных установок.

Данные показатели фиксируются в журнале эксплуатации средств ЭХЗ.

Измерение защитных потенциалов на нефтепроводе на всех контрольно-измерительных пунктах проводится 2 раза в год.

Электрохимическая защита должна обеспечивать в тече­ние всего срока эксплуатации непрерывную во времени ка­тодную поляризацию трубопровода на всем протяжении не меньше минимального ( — 0,85 В для поляризационного и — 0,9 В для потенциала с омической составляющей) и не больше максимального ( — 3,5 В для потенциала с омической составляющей) защитных потенциалов.

После укладки и засыпки законченных строительством или ремонтом участков трубопровода специалисты участка ВЛ и ЭХЗ должен провести определение сплошности изоля­ционного покрытия.

При обнаружении искателями дефектов в покрытии уча­стки с дефектами должны быть вскрыты, изоляция отремон­тирована.

Для контроля за состоянием защитного покрытия и рабо­той средств ЭХЗ каждый трубопровод должен быть оснащен контрольно-измерительными пунктами:

на каждом километре нефтепровода; не реже 500 м при прохождении нефтепровода в зоне действия блуждающих токов или при наличии грунтов с вы­сокой коррозионной активностью; у водных и транспортных переходов с обеих сторон гра­ницы перехода; у задвижек; у пересечений с другими металлическими подземными со­оружениями; на вновь построенных и реконструируемых МН кон­трольно-измерительные пункты должны быть оборудованы электродами для контроля за уровнем поляризационного по­тенциала и для определения скорости коррозии.

Комплексное обследование МН с целью определения со­стояния противокоррозионной защиты требуется проводить на участках высокой коррозионной опасности не реже 1 раза в 5 лет, а на остальных участках — не реже 1 раза в 10 лет в соответствии с нормативными документами. При комплекс­ном обследовании противокоррозионной защиты трубопро­водов должны быть определены состояние изоляционного покрытия (сопротивление изоляции, места нарушения ее сплошности, изменение ее физико-механических свойств за время эксплуатации), степень электрохимической защиты (наличие защитного потенциала на всей поверхности трубо­провода) и коррозионное состояние (по результатам электро­метрии, шурфовки). Все обнаруженные при обследовании повреждения защитного покрытия должны быть точно при­вязаны к трассе нефтепровода, учтены в эксплуатационной документации и устранены в запланированные сроки.

Электрохимическая защита кожухов трубопроводов под авто- и железными дорогами выполняется самостоятельными защитными установками (протекторами). В процессе эксплуа­тации трубопровода следует проводить контроль наличия электрического контакта между кожухом и трубопроводом.

Вопросы для самоконтроля
  1. Методы защиты трубопроводов от коррозии
  2. Периодичность проверки работы средств ЭХЗ
  3. Правила эксплуатации установок электрохимзащиты
  4. Комплексное обследование состояния противокоррозионной защиты


Тема 1.5. Эксплуатация переходов магистральных трубопроводов через препятствия

Студент должен:

знать: правила ухода за переходами в различное время года;

у м е т ь: определять утечки в трубопроводе, обследовать техническое со­стояние футляров переходов, устранять выявленные дефекты оборудования.

Уход за переходами магистральных трубопроводов в летний период и обеспечение их надёжной работы в осенне-зимний. Выявление утечек в трубо­проводе, обследование берегов, русловой части подводных переходов, пригрузки трубопроводов, состояния изоляции и т.п.

Обследование и выявление технического состояния футляров переходов через автомобильные и железные дороги, устранение выявленных дефектов, оборудование, средства и приборы для ведения этих работ.

Методические указания

В процессе эксплуатации подземных переходов нефтепро­водов через железные и автомобильные дороги необходимо проверять:

состояние смотровых и отводных колодцев, отводных ка­нав для выявления утечек нефти, нарушений земляного по­крова, опасных для нефтепровода проседаний и выпучиваний грунта (не реже 1 раза в месяц);

положение защитного кожуха и нефтепровода, а также состояние изоляции нефтепровода.

В процессе эксплуатации балочных, подвесных и арочных надземных переходов необходимо вести визуальный контроль за общим состоянием воздушных переходов трубопровода, береговых и промежуточных опор, их осадкой, состоянием мачт, тросов, вантов, берегов в полосе переходов, берегоукре­пительных сооружений, водоотводных канав, мест выхода тру­бопроводов из земли, креплений трубопроводов в опорах зем­ляных насыпей.

Обследования воздушных переходов должны выполняться не реже 2 раз в год: весной — после паводка, летом — в пе­риод подготовки к осенне-зимней эксплуатации.

Результаты обследований оформляются актами и записы­ваются в соответствующие паспорта и журналы.

В процессе эксплуатации подводных перехо­дов периодически необходимо проводить оценку их техниче­ского состояния

Техническое состояние подводных переходов определяет­ся по результатам внутритрубной диагностики, обследований состояния антикоррозионной изоляции трубы, проверки пла­ново-высотного положения трубопровода, целостности берегоукрепления, измерений и анализа влияния гидрологических характеристик водотока на состояние и положение трубопро­вода и по сопоставлению фактического состояния переходов с нормативными и проектными показателями.

Техническое обслуживание и эксплуатация подводных переходов осуществляется линейной эксплуатаци­онной службой (ЛЭС) и обходчиком.

Обходчик ежедневно и бри­гада ЛЭС 1 раз в квартал и после прохождения паводка про­водят осмотры технического состояния берегоукрепительных сооружений и береговых участков ППМН с целью определе­ния: размывов берега; развития оврага; развития оползней; наличия провалов и пучения грунта; наличия кустарника и растительности по оси нефтепро­вода.

Ежегодно в соответствии с планом проводится очистка от древесной поросли и другой растительности полосы шириной по 3 м от оси МН.

Ежедневно обходчик и ежеквартально бригада ЛЭС про­веряют наличие и состояние информационных знаков ограж­дения охранной зоны перехода на судоходных и сплавных водных путях, указательных знаков оси трубопроводов на

Ежеквар­тально проверяются все задвижки перехода:

на полное закрытие и открытие с регулировкой (при не­обходимости) концевых выключателей; на герметичность с составлением акта на каждую прове­ренную задвижку с отметкой в паспорте подводного перехода и формуляре запорной арматуры.

Проверка всех задвижек перехода (основной и резервных ниток) на полное закрытие и открытие выполняется в режи­мах телеуправления и местного управления.

В процессе техническо­го обслуживания в соответствии с планом производятся очи­стка и промывка основной и резервной ниток подводного перехода.

В соответствии с годовым планом проводятся внутритрубная диагностика, полное или частичное обследование подвод­ного перехода.

Ежемесячно проверяют техническое состояние узлов от­бора давления в соответствии с эксплуатационной докумен­тацией.

Обходчик в зимний период обязан 3 раза в неделю бурить лунки во льду для контроля наличия нефти подо льдом.

Вопросы для самоконтроля
  1. Порядок контроля за состоянием переходов через авто и железные дороги
  2. Порядок контроля за состоянием балочных, подвесных и арочных надземных переходов
  3. Порядок контроля за состоянием подводного перехода
  4. Проверка технического состояния подводных переходов
  5. Порядок обследования подводных переходов в процессе эксплуатации