Анализ временных рядов
Контрольная работа - Экономика
Другие контрольные работы по предмету Экономика
фон Неймана, применённое к остаткам оценки. Этот критерий имеет эффективность аналогичную таковой для критерия r1, первого коэффициента автокорреляции остатков. Из предыдущей главы известно, что этот критерий будет особенно мощным, если ошибки следуют авторегрессинному процессу первого порядка. Таким образом, он, по-видимому, хорошо приспособлен для экономических моделей.
Значение d в выборке зависит одновременно от последовательности zt и от значений et( для t = 1,2, . . . ,N). Однако Дарбин и Уотсон показали, что для заданных значений et значение d обязательно заключено между двумя границами d U и d L , не зависящими от значений, принимаемых zt , и являющимися функциями лишь чисел N , именно d L d d U.
Для некоторых значений последовательности zt границы d U и d L могут достигаться. Интервал [d L ,d U ] является, следовательно, наименьшим из возможных, если не принимать во внимание точные значения zt.
Границы d U и d L представляют случайные величины, распределение которых можно определить с помощью точных гипотез относительно распределения et.
Для практического использования таблицы полученное значение d* следует сравнить с d1 и d2.
а) Если d* < d1, то вероятность столь малого значения наверняка меньше a. Гипотеза независимости отбрасывается.
б) Если d* > d2, то вероятность столь малого значения наверняка больше a. Гипотеза независимости не отбрасывается.
в) Если d 1 d* d 2 , то приведённые таблицы оставляют вопрос открытым. Возможно, что гипотезу независимости при уровне значимости a следует отбросить. Однако этого нельзя узнать без изучения закона распределения вероятностей d для последовательности переменных zt . Практически в этом случае часто довольствуются указанием на то , что значение d* попадает в область неопределённости критерия.
В настоящее время принято приводить значение d* вместе с регрессиями для временных рядов и указывать на расположение этого значения относительно d 1 и d 2 .
Есть несколько существенных ограничений на применение критерия Дарбина - Уотсона.
Во-первых, он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, то есть к моделям авторегрессии. Для тестирования на автокорреляцию остатков моделей авторегрессии используется критерий h Дарбина.
Во-вторых, методика расчёта и использования критерия Дарбина - Уотсона направлена только на выявление автокорреляции остатков первого порядка. При проверке остатков на автокорреляцию более высоких порядков следует применять другие методы.
В-третьих, критерий Дарбина - Уотсона даёт достоверные результаты только для больших выборок.