Анализ временных рядов
Контрольная работа - Экономика
Другие контрольные работы по предмету Экономика
?ать простирающейся неограниченно в будущее и, возможно, в прошлое. Последовательность случайных величин у1, у2, . . . или . . ., у-1, у0, у1, . . . называется случайным процессом с дискретным параметром времени.
Несмотря на полную произвольность вероятностных моделей последовательностей случайных величин, полезно отличать случайные процессы от множества случайных величин этого процесса, учитывая понятие времени. Грубо говоря, в случайном процессе наблюдения, разделённые небольшими промежутками времени, близки по значениям в отличие от наблюдений, далеко отстоящих друг от друга во времени. Более того, модель значительно упрощается после расширения конечной последовательности наблюдений до бесконечной.
Одним из таких упрощений является свойство стационарности. Будем считать, что поведение множества случайных величин с вероятностной точки зрения не зависит от времени.
Случайный процесс y(t) с непрерывным параметром времени можно определить для 0 ? t < ? или -? < t < ? и рассматривать с привлечением вероятностной меры на пространстве функций y(t). Выборка из такого процесса состоит из наблюдений в конечном числе точек времени , или из непрерывных наблюдений в интервале времени.
Наблюдение процесса, часто называемое реализацией, есть точка в соответствующем бесконечномерном пространстве, где определена вероятностная мера. Вероятность определяется на некоторых множествах, называемых измеримыми. Этот класс множеств включает вместе с любым множеством его дополнение, а также объединение и пересечение счётного числа множеств этого класса; вероятностная мера на этом классе множеств определяется таким образом, что вероятность объединения непересекающихся множеств равна сумме вероятностей отдельных множеств.
Практически мы интересуемся вероятностями, которые связаны с конечным числом случайных величин. Эти вероятности включают в себя функцию совместного распределения. [24, c. 88]
1.9 Применение быстрого преобразования Фурье к стационарному временному ряду
Одно из назначений преобразования Фурье- выделять частоты циклических составляющих временного ряда, содержащего случайную компоненту.
Пусть число данных N представимо в виде N = N1 N2. Тогда можно записать
t = t1 + (t 2-1)N1 , t1 = 1, . . ., N1 , t2 = 1, . . ., N2 ;
j = j1 + j 2N2 , j1 = 0, . . ., N2 - 1 , j2 = 0, . . ., N1 - 1;
Отметим, что aN - j = aj и bN - j = - bj . Искомые коэффициенты являются соответственно действительной и мнимой частями суммы:
(1.9.1)
Для их отыскания вычислим сначала величины
Для каждой пары ( j1, t1 ) , j1 = 0, . . ., N2 - 1 и t1 = 0, . . ., N1 . Поскольку
и ,
то существует около N1N2/2 = N/2 таких пар. После этого находятся действительная и мнимая части суммы (1.9.1):
для j = 0,1, . . ., [N/2]. Число операций умножения приближённо равно N2N в первых суммах и 2N1N во вторых суммах, так что число операций умножения в целом составляет примерно N (N2 + 2N1). В то же время число произведений в определении коэффициентов aj и bj , j=0,1, . . ., [N/2] примерно равно N2. [20, c.98], [21, c.78]
1.10 Автокорреляция остатков. Критерий Дарбина- Уотсона
Для каждого момента (периода) времени t = 1 : N значение компоненты et для аддитивной модели определяется как
,
где - сумма циклической и трендовой компонент, а для мультипликативной модели:
где - произведение циклической и трендовой компонент.
Ошибки измерений нам неизвестны, а известны лишь эмпирические остатки.
Рассматривая последовательность остатков как временной ряд , можно построить график их зависимости от времени. В соответствии с предпосылками метода наименьших квадратов остатки et должны быть случайными. Однако при моделировании временных рядов часто встречаются ситуация, когда остатки содержат тенденцию или циклические колебания. Это свидетельствует о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции остатков.
Автокорреляция остатков может быть вызвана следующими причинами, имеющими различную природу. Во-первых, иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака. Во-вторых, в ряде случаев причину автокорреляции остатков следует искать в формулировке модели. Модель может не включать фактор, существенное воздействие на результат, влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени t. Кроме того, в качестве таких существенных факторов могут выступать лаговые значения переменных, включённых в модель.
Либо модель не учитывает несколько второстепенных факторов, совместное влияние которых на результат существенно в виду совпадения тенденций их изменения или фаз циклических колебаний.
Существует два наиболее распространённых метода определения автокорреляции остатков. Первый метод - это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод - использование критерия Дарбина - Уотсона.
Дж. Дарбин и Г. Уотсон построили таблицы, дающие нижние и верхние пределы порогов значимости. Эти таблицы достаточны для большинства конкретных ситуаций. Рассмотрим логические основания критерия .
Выражение
(1.10.1)
представляет собой отношение