Анализ временных рядов
Контрольная работа - Экономика
Другие контрольные работы по предмету Экономика
?оэффициент корреляции.
Несмотря на близость значений R и r или R и r в нелинейных функциях с преобразованием значения признака у, следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию, как следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию как , так и , так как, то при криволинейной зависимости для функции y=j(x) не равен для регрессии x=f(y).
Поскольку в расчёте индекса корреляции используется соотношение факторной и общей суммы квадратов отклонений, то имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину для нелинейных связей называют индексом детерминации.
Оценка существенности индекса корреляции проводится, так же как и оценка надёжности коэффициента корреляции.
Индекс корреляции используется для проверки существенности в целом уравнения нелинейной регрессии по F-критерию Фишера:
где - индекс детерминации;
n - число наблюдений;
m - число параметров при переменных х.
Величина m характеризует число степеней свободы для факторной суммы квадратов, а ( n - m - 1) - число степеней свободы для остаточной суммы квадратов.
Для степенной функции m = 1 и формула F - критерия примет тот же вид, что и при линейной зависимости:
Для параболы второй степени y = a0 + a1 x + a2 x2 +?m = 2 и
(1.6.5)
Расчёт F-критерия можно вести и в таблице дисперсионного анализа результатов регрессии, как это было показано для линейной функции.
Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина коэффициента детерминации меньше индекса детерминации. Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.
Практически, если величина разности между индексом детерминации и коэффициентом детерминации не превышает 0,1, то предположение о линейной форме связи считается оправданным. В противном случае проводится оценка существенности различия R2, вычисленных по одним и тем же исходным данным, через t - критерий Стьюдента:
(1.6.6)
m |R- r| - ошибка разности между R2и r2, определяемая по формуле
Если t факт >t табл , то различия между рассматриваемыми показателями корреляции существенны и замена нелинейной регрессии уравнением линейной функции невозможна. Практически, если величина t < 2, то различия между Ryx и ryx несущественны, и, следовательно, возможно применение линейной регрессии, даже если есть предположения о некоторой нелинейности рассматриваемых соотношений признаков фактора и результата.
1.7 Аддитивная и мультипликативная модели временного ряда
Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.
Простейший подход- расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:
Y= T + S + E.
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Общий вид мультипликативной модели выглядит так:
Y = T•S•E.
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.
Построение аддитивной и мультипликативной моделей сводится к расчету значений трендовой, циклической и случайной компонент для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
1.Выравнивание исходного ряда методом скользящей средней.
2.Расчет значений сезонной компоненты.
3.Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной или мультипликативной модели.
4.Аналитическое выравнивание уровней и расчет значений тренда с использованием полученного уравнения тренда.
5.Расчет полученных по модели значений или
6.Расчет абсолютных и относительных ошибок.
Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.[5, c. 67]
1.8 Стационарные временные ряды
После удаления тенденции (тренда) из временного ряда мы получим стационарный временной ряд. Его можно рассматривать как выборку Т последовательных наблюдений через равные промежутки времени из существенно более продолжительной (генеральной последовательности случайных величин. При этом статистические выводы делаются относительно вероятностной структуры генеральной последовательности. Такую последовательность удобно счи?/p>