Научно-методические основы управления состоянием хвостохранилищ горно-металлургического производства

Методическое пособие - Разное

Другие методички по предмету Разное

ь материала которых равна ?ч, из (19) имеем

 

, (20)

 

Где

.

Радиус падающей в воде частицы увеличивается как за счет присоединения мельчайших твердых частиц, так и за счет присоединения молекул растворенного в воде воздуха. Для простоты, как в работе [11], будем считать, что масса частицы возрастает пропорционально ее поверхности, т.е.

 

,

 

где ro - начальный радиус частицы; ? - некоторый коэффициент, который характеризует быстроту увеличения радиуса частицы (м/с). Если сила сопротивления пропорциональна площади максимального поперечного сечения частицы и скорости частицы:

 

, (21)

 

где k - коэффициент, который учитывает свойства поверхности частицы (Нс/м3). Составим дифференциальное уравнения движения частицы переменной массы

. (22)

 

(получение и решение подобного уравнения детально описано в работе [11]. Ось Х направлена вертикально вниз).

Из уравнения (22) находим скорость частицы как функцию времени падения частицы

 

, (23)

 

и высоту положения частицы

 

. (24)

 

Исследуем уравнение (23)и (24) в предельном случае. При k=0 из (23) следует равенство

 

(25)

 

Разложим соответствующие выражения в формуле (25) в ряды

 

;

,

 

Подставим эти разложения в (25) и ограничиваясь первыми слагаемыми при ?=0, найдем

 

. (26)

 

Для определения высоты падающей частицы мы нашли, что

 

(27)

 

При k=0 (сопротивление падению частицы не учитывается) из (27) находим

 

. (28)

 

При ?=0 (без учета прилипания частичек) из (28) имеем

 

, (29)

 

где h0 - первоначальная высота нахождения частицы, м.

На рис.2. приведены вычисленные зависимости скорости падения сферической частицы в воде для разных значений коэффициента ?.

Рис. 2. Зависимость скорости оседания частиц в воде при А=0,9; V0=0,05 м/с; r0=0,005 м: кривая 1 - ?=0; 2 - ?=0,02; 3 - ?=0,04.

 

Из рисунка видим, что с увеличением числа захваченных данной частицей (мельчайших частиц или молекул) скорость падения уменьшится. Это приводит к тому, что такие частицы захватывают на своем пути большое количество инородных молекул или частиц.

Частица с захваченными ею молекулами газа может подниматься в воде вверх. В грубом приближении условие такого поднимания можно записать в виде

 

, (30)

 

где RI - радиус частицы с захваченными молекулами газа, м. Из (30) находим

 

. (31)

 

При известных величинах R и RI находим объем газовой оболочки

. (32)

 

и при известном радиусе молекул газа Rм определяем их число

 

. (33)

 

Например, для частиц песка (?ч=2,65 г/см3) с 2R=1010-4 cм число захваченных молекул кислорода или азота (Rм=0.1510-7 см) Nм=4,8107.

 

Выводы

 

1.Полученные формулы позволяют установить процесс оседания различных частиц в воде на разных стадиях.

.Скорость оседания частиц зависит от захвата ими других частиц и молекул. С увеличением числа захваченных частиц скорость оседания уменьшится.

.При захвате частицами молекул газа они могут подниматься вверх (например гранулы ВВ в обводненной скважине).

 

Библиографический список

 

1.Запольский А.К. Водопостачання, водовідведення та якість води. К.: Вища школа 2005. - 670 с.

2.Гурин А.А., Домничев Н.В., Ляшенко В.И. Природоохранные технологи пылеподавления на хвостохранилищах горно-металлургического производства// Экология и промышленность. 2010. №4. С. 24 - 30

.Ньютон И. математические начала натуральной философии. Перевод с английского в книге: А.Н. Крылов. Собрание трудов. Т. 7. М - Л., 1936

.Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. М., 1964

.Седов Л.И. Введение в механику сплошных сред. М., 1978

.Pradt L. Tietjens O. Fundamentals of Hydro- and Aeromechanics. New York. 1975

.Алешко П.И. Механика жидкости и газа. Харьков. 1977

.C.Ozz et al. J.Met, Vol. 15 Р. 40. 1985

.Чигаев Ф.Ф. Гидравлика (техническая механика жидкостей) - 4-е издание. - М. Энергоиздат. 1982 - 672 с.

.Perry R.H., Chilton C.H. Chemical Engineers. Hardbooc. Th Ed., Megraw - Hill, New York. 1973. Р. 549

.Гурин А.А., Гурин Ю.А., Ратушный В.М., Радченко И.С. О коагуляции частиц аэрозолей// Сб. научн. Трудов. Качество минерального сырья. Кривой Рог. - 2008. - с. 441 - 450.