Моделирование магнитного поля гидроэлектрического плотномера

Дипломная работа - Физика

Другие дипломы по предмету Физика

ва.

Все методы расчета магнитных полей можно разделить на аналитические, численные, графические, экспериментальные и различные их комбинации (например, графо-аналитические).

 

Рисунок 3 - Классификация методов расчета полей

 

1.2.1 Аналитические методы расчета

Интегрирование уравнения Пуассона применяется для областей, занятых током, уравнения Лапласа - для областей, не занятых током. При их решении получаются эллиптические интегралы, которые не могут быть выражены конечным числом элементарных функций. Лишь в ряде предельных случаев (бесконечная прямая, плоскость и тому подобное) или при наличии симметрии имеют решения. Чаще всего используют приближенные решения в виде табулированных функций. Но и даже в этом случае взятие двойного интеграла (в объеме) представляет значительные трудности.

Методы конформных и зеркальных отображений позволяют найти правильные решения и картину силовых линий, но приводят к необходимости перевода исходных функций в комплексные и обратно, что возможно, если известна функция преобразования. /2/ Для сложных по форме объектов, таких, как МЖ сенсор и катушка индуктивности, такие функции не известны.

 

1.2.2 Графические, экспериментальные и смешанные метод

Графические методы основаны на разбиении поля силовыми линиями и линиями равных потенциалов, и дальнейшем вычислении магнитных проводимостей каждого участка. Эти методы тесно связаны с экспериментальными, где используются экспериментально полученные зависимости и коэффициенты. Ряд смешанных методов имеет преимущества по сравнению с остальными, так как частично используются результаты, например, аналитических или численных расчетов, а потом либо корректируются, либо проводится расчет для каждого участка пространства различными методами. Смешанные методы позволяют сильно сократить объемы вычислений.

 

2.3 Численные методы

 

Наибольшей универсальностью обладают численные методы. Они обладают следующими достоинствами: простотой алгоритмизации и автоматизации вычислений, возможностью рассчитать нелинейные и неоднородные поля, легкость построения графиков, нормируемая (управляемая) точность вычислений. К их недостаткам можно отнести: невозможность вывести общие соотношения, которые можно применить во всем диапазоне решаемых задач, ограниченный объем вычислений (ограничен временем, выделенным для решения задачи), обязательно присутствует некоторая погрешность, связанная с дискретизацией величин.

Численные методы можно поделить на метод прямой подстановки и методы интегрирования уравнений. При прямой подстановке используется аналитическое выражение (если оно известно) и ряд значений координат и времени. При этом результатом является распределение магнитного поля в пространстве и времени. Численные методы решения дифференциальных уравнений можно разделить на метод прямого интегрирования и итерационного интегрирования. При прямом интегрировании непрерывное пространство заменяется (квантуется) массивом точек, а время - массивом моментов времени. Далее интеграл заменяется на сумму, а приращение (дифференциал) - на шаг квантования. При этом выбор шага квантования зависит от требуемой точности. Шаг квантования может быть как постоянным для всех переменных, так и различным. Получаемый результат - распределение поля в пространстве и времени даже при сложных эллиптических интегралах. Итерационные методы основаны на произвольном первоначальном распределении магнитного поля в пространстве (задается) и дальнейшем анализе отклонений (погрешностей) в каждой точке.

2. Выбор метода расчета

 

2.1 Выбор метода расчёта

 

Так как требуется знать распределение магнитного поля в пространстве и времени, а также силовые взаимодействия, то для обеспечения максимальной точности следует выбрать аналитические методы. Так как устройство включает в себя два источника магнитного поля: управляющие катушки и МЖ сенсора, процесс решения можно разбить на три этапа: вычисление поля катушек, вычисление поля МЖ сенсора, их суммирование.

При вычислении поля катушки можно воспользоваться частичным решением для одного витка с током, приведенным в /3, с.112/.

В решении появляются полные эллиптические интегралы. Оставшееся двойное интегрирование по толщине намотки катушек и по их высоте практически невозможно в аналитическом виде. Так как граничные условия не заданы, то возможно применить только метод прямого численного интегрирования известного аналитического выражения.

Для расчета поля МЖ сенсора заведомо не подходят чисто аналитические методы, так как МЖ сенсор имеет неправильную геометрическую форму. Так как поле сенсора зависит от поля катушек, то его можно рассчитать как статическое поле постоянного магнита, но с изменяющейся остаточной намагниченностью. Тот факт, что магнитное поле переменное, не влияет на взаимодействие полей, так как изменяющееся магнитное поле порождает электрическое, за счет которого возникает ток, но МЖ сенсор обладает малой электрической проводимостью, поэтому токи в нем не наводятся. Для расчета можно применить графические, графо-аналитические, и смешанные методы на их основе.

Суммирование магнитных полей производится по всем компонентам (проекциям) векторов магнитной индукции.

Таким образом, для расчёта используется смешанный метод на основе численного интегрирования, поля катушки и сенсора.