Методика обучения основам линии представления информации в базовом курсе информатики
Курсовой проект - Педагогика
Другие курсовые по предмету Педагогика
?а экране, на распечатке. Внутреннее представление - это представление на носителях информации в компьютере, т.е. в памяти, в линиях передачи информации. Компьютер непосредственно оперирует с информацией во внутреннем представлении, а внешнее представление используется для связи с человеком.
В самом общем смысле можно сказать, что языком представления данных ЭВМ является язык двоичных кодов. Однако с точки зрения приведенных выше свойств, которыми должен обладать всякий язык: алфавита, синтаксиса, семантики, прагматики, нельзя говорить об одном общем языке двоичных кодов. Общим в нем является лишь двоичный алфавит: 0 и 1. Но для различных типов данных различаются правила синтаксиса и семантики языка внутреннего представления. Одна и та же последовательность двоичных цифр для разных типов данных имеет совсем разный смысл. Например, двоичный код 0100000100101011 на языке представления целых чисел обозначает десятичное число 16683, а на языке представления символьных данных обозначает два символа А+. Таким образом, для разных типов данных используются разные языки внутреннего представления. Все они имеют двоичный алфавит, но различаются интерпретацией символьных последовательностей.
Языки внешнего представления данных обычно приближены к привычной для человека форме: числа представляются в десятичной системе, при записи текстов используются алфавиты естественных языков, традиционная математическая символика и пр. В представлении структур данных используется удобная табличная форма (реляционные базы данных). Но и в этом случае всегда существуют определенные правила синтаксиса и семантики языка, применяется ограниченное множество допустимых символов. Внутренним языком представления действий над данными (языком управления работой компьютера) является командный язык процессора ЭВМ. К внешним языкам представления действий над Данными относятся языки программирования высокого уровня, входные языки пакетов прикладных программ, командные языки операционных систем, языки манипулирования данными в СУБД и пр.
1.3 Языки представления чисел: системы счисления
Тема Системы счисления имеет прямое отношение к математической теории чисел. Однако в школьном курсе математики она, как правило, не изучается. Необходимость изучения этой темы в курсе информатики связана с тем фактом, что числа в памяти компьютера представлены в двоичной системе счисления, а для внешнего представления содержимого памяти, адресов памяти используют шестнадцатеричную или восьмеричную системы. Это одна из традиционных тем курса информатики или программирования. Являясь смежной с математикой, данная тема вносит вклад также и в фундаментальное математическое образование школьников.
В первых учебниках информатики понятие системы счисления не упоминается совсем. Говорится лишь о том, что вся информация в компьютере представляется в двоичном виде. Среди учебников второго поколения наибольшее внимание системам счисления уделено в книге. Этой теме посвящен отдельный параграф, где дано следующее определение Система счисления - способ записи чисел с помощью заданного набора специальных знаков (цифр). В более позднем учебнике этих же авторов приводится такое определение: Способ записи чисел называется нумерацией или, по-другому, системой счисления.
Если рассматривать систему счисления как язык представления числовой информации, то можно сказать, что данные выше определения затрагивает только алфавит, синтаксис и семантику языка чисел. Система счисления - способ изображения чисел и соответствующие ему правила действия над числами. Под правилами действия понимаются способы выполнения арифметических вычислений в рамках данной системы счисления. Эти правила можно назвать прагматикой языка чисел.
1.4 Язык логики и его место в базовом курсе
Логика - наука, изучающая методы установления истинности или ложности одних высказываний на основе истинности или ложности других высказываний. Основы логики как науки были заложены в IV в. до н.э. древнегреческим ученым Аристотелем. Правила вывода истинности высказываний, описанные Аристотелем (силлогизмы) оставались основным инструментом логики вплоть до второй половины XIX в., когда в трудах Дж. Буля, О. де Моргана и др. возникла математическая логика. Средствами этой новой науки все прежние достижения логики были переведены на точный язык математики. Развивается аппарат алгебры логики (булевой алгебры), исчисления высказываний, исчисления предикатов. Развитие математической логики имело большое значение для всей математической науки, повысив уровень ее строгости и доказательности.
Логика относится к числу дисциплин, образующих математический фундамент информатики. Знакомство учащихся с элементами математической логики в рамках курса информатики может происходить в следующих аспектах:
- процедурно-алгоритмическом;
- в логическом программировании;
- схемотехническом.
К первому аспекту относится использование логических величин и логических выражений в языках программирования процедурного типа, а также в работе с электронными таблицами, с базами данных. В условных операторах, условных функциях, реализующих алгоритмическую структуру ветвления, используются логические выражения. В запросах на поиск информации в базах данных также присутствуют логические выражения. Использование в програ