Алгоритми розрахунку періодичного режиму в нелінійній схемі

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

?ів, припускається, що перші дані точні. Локальна помилка складається з методичної та помилки округлення. Перша залежить від методу, друга від арифметичної точності ЕОМ. В практично використаних методах локальна методична помилка повинна допускати оцінку. Крім того, має місце локальна перехідна помилка, яка зобовязана своїм існуванням похибкам на попередньому кроці.

Для користувача важлива загальна, глобальна помилка, відповідальна за весь інтервал інтегрування. Звязок локальної помилки із загальною складний. Тому при аналізі методу глобальна помилка не розглядається, а уяву про неї одержують за допомогою тестових прикладів.

Друга характеристика методів чисельного інтегрування їх стійкість. Практичний прояв її виглядає так. Припустимо, інтегруємо тестове диференційне рівняння, для якого відомо точне рішення. Обчислення проводимо кілька разів з постійним кроком, збільшуючи крок від одного розрахунку до іншого. До деякої величини кроку, яку звуть критичною, похибка інтегрування постійно зростає. Але як тільки крок перейде критичне значення, похибка різко зростає (виникає чисельна нестійкість) і отримані результати значно відрізняються від справжніх. Із сказаного випливає, що нестійкий метод не придатний для задач, де виникає потреба інтегрування диференційних рівнянь протягом тривалого часу: щоб уникнути чисельної нестійкості, необхідно змінювати крок, а це збільшує кількість кроків і призводить до зростання загальної похибки через накопичення усіх видів помилок перехідної, округленої, методичної.

Методи чисельного інтегрування розрізняються в точності, стійкості і ряді інших властивостей. Наведемо прийняту в літературі класифікацію і вкажемо властивості методів, належних до окремих класів.

Методи поділяються на дві великі групи. Відмінна особливість обох груп спосіб апроксимації заданої функції. В першій групі використовується розклад в ряд Тейлора, в другій апроксимація функції поліномом з тейлорівським розкладанням. Широке розповсюдження отримали методи другої групи, котрі у вітчизняній літературі звуться кінцево-різницевими.

спектральний інтегрування нелінійний періодичний

Формула довільного кінцево-різницевого методу, відносно до рішення диференційного рівняння при початкових умовах , записується так

 

, (1)

 

де ,

- крок інтегрування.

Число p задає кількість попередніх кроків, які визначають значення шуканої функції. При р=0 метод зветься однокроковим. Якщо , то метод явний, при - неявний. В останньому випадку шукане значенні входить до правої частини (1) як аргумент нелінійної функції. Співмножники , (їх число дорівнює 2р+3) шукається методом невизначених коефіцієнтів при поліміальній апроксимації невідомої функції . Число m називають порядком методу. За допомогою невизначених коефіцієнтів складають m+1 рівняння відносно , . Коли 2p+3 > m+1, тоді частиною співмножників задаються.

Відомі формули Ейлера явна

 

 

та неявна

 

відносяться до однокрокового методу першого порядку. Його локальна методи- чна похибка оцінюється величиною . Якщо зберегти порядок методу і зробити його багатокроковим, то підбором співмножників в (1) можна зменшити методичну похибку. Таким чином, точність кінцево різницевих методів зростає із збільшенням їх порядку і числа попередніх кроків, які враховуються. Однак треба мати на увазі, що підвищення порядку супроводжується зменшенням області стійкості.

На перший погляд уявляється, що явні методи мають перевагу над неявними тому, що в останніх значення виходить із рішення нелінійного рівняння, а в явних розраховується за аналітичним виразом. Але як свідчить аналіз, неявні методи більш стійкі. Отож, вони допускають при заданій точності більший крок.

В даний час в алгоритмах чисельного інтегрування проблемно-орієнтованих програм використовується кінцево-різницеві методи, які мають бажану стійкість та дозволяють оцінювати локальну методичну похибку на кожному кроці. За допомогою цієї оцінки підтримується максимальний розмір кроку і вибирається мінімальний порядок методу. Для зменшення обєму розрахунків в неявних методах розраховується спочатку за відповідною явною формулою (прогноз), а потім уточнюється за допомогою неявної (корекція). Після вибору методу чисельного інтегрування програміст основні зусилля направляє на створення ефективного алгоритму, який визначає розмір кроку.

Відносно методів інтегрування, спираючись на розклад невідомої функції в ряд Тейлора, наприклад методом Рунге-Кутта різних порядків, можна зазначити, що вони знаходять обмежене використання. Повязано це з двома обставинами: по-перше, ускладнюється оцінка локальної методичної похибки на кожному кроці інтегрування; по-друге, для визначення треба m разів обчислити значення першої частини диференційних рівнянь (m порядок методу), причому ці значення неможливо використовувати на інших кроках. Друга властивість знижує ефективність розрахунків порівняно з кінцево-різницевими формулами. Методом Рунге-Кутта зручно починати чисельне інтегрування, якщо воно ведеться за багатокроковими різницевими формулами, для отримання необхідних початкових значень. Справа в тому, що методи Рунге-Кутта виявляються явними та однокроковими. Тому використання їх на початковій стадії обчислення не дуже позначиться на загальних часових втратах, а необхідна точність забезпечується правильним вибором порядку.

 

3. Спектральні методи