Метод группировок в статистике, его значение в использовании социально-экономических явлений по материалам ОАО "Ливенский завод противопожарного машиностроения"
Дипломная работа - Экономика
Другие дипломы по предмету Экономика
ь наиболее существенные признаки, построить систему взаимосвязи и группировки показателей и т.д.
Статистика разработала множество методов изучения связей, выбор которых зависит от целей исследования и поставленных задач. Признаки по их значению для изучения взаимосвязи делятся на два класса. Признаки, обусловливающие изменения других, связанных с ними признаков, называются факторными или просто факторами. Признаки, изменяющиеся под действием факторных признаков, являются результативными. [9, с. 110]
Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению. В статистике различают функциональную связь и статистическую зависимость. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой единицы исследуемой совокупности. Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется статистической. Частным случаем связи является корреляционная связь, при которой изменение среднего значения результативного признака обусловлено изменением факторных признаков.
По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значении факторного признака происходит увеличение или уменьшение значений результативного. [9, с. 111] Так, рост производительности труда способствует увеличению уровня рентабельности производства. В случае обратной связи значения результативного признака изменяются под воздействием факторного. Так, с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.
По аналитическому выражению выделяют также связи прямолинейные (или просто линейные) и криволинейные (нелинейные). Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, степенной, показательной, экспоненциальной и т.д.), то такую связь называют нелинейной или криволинейной.
Для выявления наличия связи, ее характера и направления в статистике используются следующие методы: анализ параллельных рядов; аналитические группировки; графический метод; метод корреляции.
Таким образом, выявление связей между явлениями и их признаками - основная задача группировки статистического материала. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять признаки, оказывающие основное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения - это связь явлений и процессов, когда изменение одного из них - причины, ведет к изменению другого - следствия.
3.2 Многомерные группировки
Аналитические группировки, построенные по одному признаку, и сложные группировки позволяют установить связь и определить направление между результативными и 1 - 3- факторными признаками. Но часто этого бывает недостаточно, так как в действительности на изменение величины результативного признака оказывает влияние множество факторов, действующих в разных направлениях. [13, с. 93] Для исследования таких многофакторных связей используются многомерные группировки. Целью таких группировок является расчленение совокупности социально-экономических явлений на качественно-однородные группы по большому числу признаков одновременно и определение на их основе связи и влияния факторных признаков на результативный. В основу построения многомерной группировки положен принцип перехода от величин, имеющих определённую размерность (рубли, тонны, гектары и т.д.), к безразмерным относительным величинам.
На основе многомерной группировки можно построить уравнение регрессии, количественно отражающее степень связи между признаками. [13, с. 94]
Эти методы получили распространение благодаря использованию ЭВМ и пакетов прикладных программ. Цель этих методов - классификация данных, иначе говоря, группировка на основе множества признаков. Задачи этого класса широко распространены в науках о природе и обществе, в практической деятельности по управлению массовыми процессами. Например, выделение типов предприятий по финансовому положению, по экономической эффективности деятельности производится на основе множества признаков: выделение и изучение типов людей по степени их пригодности к определенной профессии; диагностика болезней на основании множества объективных признаков и т. д. [3, c. 133]
Простейшим вариантом многомерной классификации является группировка на основе многомерных средних.
Многомерной средней называется средняя величина нескольких признаков для одной единицы совокупности. Поскольку нельзя рассчитать среднюю величину абсолютных значений разных признаков выраженных в разных единицах измерения, то многомерная средняя вычисляется из относительных величин, как правило, - из отношений значений признаков для единицы совокупности к средним значениям этих признаков:
, (11)
где - многомерная средняя для i-единицы;
- значения признака для i-единицы;
- среднее значение признака ;
k - число признаков;
j - номер признака;
i - номер единицы совокупности.
<