Критерій відношення правдоподібності для великих вибірок

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

?ої величини клас розподілів цієї випадкової величини. Статистикою називають будь-яку випадкову величину, що залежить лише від вибірки . Статистика називається оцінкою невідомого параметра розподілу , якщо для кожної реалізації вибірки значення приймається за наближене значення параметра . Статистика називається незміщеною оцінкою параметра , якщо (тут - це математичне сподівання, тобто , якщо випадкова величина має неперервну функцію розподілу( у цьому випадку у точках існування похідної, і називається функцією щільності ), і у дискретному випадку( тобто набуває не більш, ніж зліченної кількості значень відповідно з ймовірностями , не більш, ніж зліченна множина і )). Позначимо через клас незміщених оцінок для параметра . Тоді, оптимальною оцінкою параметра називається така статистика , що

 

 

 

де і називається дисперсією випадкової величини .

Нехай щільність розподілу випадкової величини ( або ймовірність у дискретному випадку), вибірка з розподілу ( тобто всі мають розподіл і є незалежними випадковими величинами), реалізація вибірки. Функція є щільністю розподілу випадкового вектора . Якщо розглядається при фіксованому значенні , то така функція параметра називається функцією правдоподібності. Оцінкою максимальної правдоподібності невідомого параметра називається таке значення , при якому для заданого .

Статистичною гіпотезою( або просто гіпотезою) називають будь-яке твердження щодо виду чи властивостей розподілу спостережуваної випадкової величини. Статистичні гіпотези надалі позначатимемо так: . Статистичною параметричною гіпотезою називається припущення про значення невідомого параметра розподілу Наведемо приклади параметричних гіпотез:

  1. де взагалі кажучи, деяка векторна функція , стала.

  2. В загальному випадку параметрична гіпотеза задається деякою підмножиною

    , до якої, за припущенням, належить невідомий параметр . Тоді параметрична гіпотеза записується так: . Альтернативна гіпотеза має вигляд: ; точки називаються альтернативами. Якщо множина містить лише одну точку, то гіпотезу( альтернативу ) називають простою; у протилежному випадку гіпотезу( альтернативу) називають складною.

    Правило, згідно якого висунута гіпотеза

    приймається або відкидається, називається статистичним критерієм( або просто критерієм) перевірки гіпотези .

    Нехай вибірка з розподілу і висунута параметрична гіпотеза ( може бути як скаляром, так і вектором і надалі будемо вважати його вектором, якщо не обумовлено протилежне). Потрібно визначити чи узгоджується запропонована гіпотеза із результатами проведеного експерименту. У такому випадку поступають наступним чином: будують таке правило( критерій), яке дозволяє на основі отриманих реалізацій вибірки зробити висновок: прийняти гіпотезу чи відхилити її( прийняти альтернативу ). Отже, критерій розбиває вибірковий простір на дві множини такі, що , де складається із тих точок, для яких гіпотеза приймається, а множина із точок, для яких відхиляється. Множина називається областю прийняття гіпотези, а множина називається областю відхилення гіпотези, або критичною областю.

У процесі перевірки гіпотези можна прийти до правильного висновку або допустити помилку першого роду відхилити , коли гіпотеза вірна, чи помилку другого роду прийняти , коли вона хибна.

Ймовірності цих двох помилок можна виразити через функцію потужності критерію : . А саме: ймовірність похибки першого роду рівна , а ймовірність похибки другого роду рівна .

Число називають рівнем значущості критерію, якщо .

Нехай , тоді квантилем розподілу називається корінь рівняння . Якщо функція строго монотонна, то це рівняння має єдиний корінь; у протилежному випадку це рівняння має декілька коренів, і тоді квантилем називають мінімальний серед коренів рівняння.

 

2. Критерій відношення правдоподібності для великих вибірок

 

Одним із найбільш універсальних методів побудови критеріїв перевірки складних гіпотез є метод відношення правдоподібності, суть якого полягає у наступному. Для перевірки гіпотези проти альтернативи вводиться статистика відношення правдоподібності

 

 

де , функція правдоподібності. Разом із статистикою вводиться статистика

 

 

Будемо вважати, що виконуються умови регулярності, що забезпечують існування, єдність і асимптотичну нормальність оцінки максимальної правдоподібності параметра . Розглянемо випадок простої гіпотези.

Теорема. Нехай потрібно перевірити просту гіпотезу фіксована внутрішня точка множини . Тоді для великих вибірок( ) при виконанні вказаних умов регулярності критерію відношення правдоподібності задається асимптотично критичною множиною

 

(1)

 

тобто при

 

 

де рівень значущості критерію.

Доведення. Покажемо, що з умов теореми слідує:

 

(2)

 

звідки випливає рівність (1). Якщо справедлива гіпотеза , то в силу спроможності оцінки максимальної правдоподібності при великих точка близька до , тому для можна записати розклад Тейлора відносно точки :

 

 

де Звідси випливає, що

 

 

Оскільки слушна оцінка для , а другі похідні функції правдоподібності, за припущенням, неперервні по , то справедливо:

 

 

 

На основі закону великих чисел при величина

 

 

збігається за ймов?/p>