Каскад высокого давления приводного газотурбинного двигателя

Дипломная работа - Физика

Другие дипломы по предмету Физика

?и отверстиями для установки рабочих топливных форсунок.

Турбина

Турбина двигателя ? осевая, реактивная, пятиступенчатая, преобразует энергию газового потока в механическую энергию вращения компрессоров двигателя, приводов агрегатов и нагнетателя. Турбина расположена непосредственно за камерой сгорания. К турбине присоединяется диффузорное выходное устройство с промежуточным поджатием воздуха, которое служит для уменьшения давления за турбиной, т.е. для повышения теплоперепада на турбине и, соответственно, для увеличения мощности двигателя. В нашей силовой установке турбина состоит из одноступенчатой турбины высокого давления(ТВД), одноступенчатой турбины низкого давления (ТНД), каждая из которых включает статор и ротор, и трехступенчатой свободной турбины, которая состоит из статора, ротора и корпуса опор ротора свободной турбины. Ротор ТВД и ротор КВД образуют ротор высокого давления(ВД). Ротор ТНД и ротор КНД образуют ротор низкого давления (НД). Ротор свободной турбины соединён с ротором нагнетателя.

Опорами роторов ТВД и ТНД, являющимися задними опорами роторов ВД и НД, служат роликоподшипники; опорами ротора свободной турбины ? шарикопод- шипник и роликоподшипник.

Все подшипники охлаждаются и смазываются маслом под давлением. Для предотвращения нагрева подшипников горячими газами их масляные полости изолированы радиально-торцовыми контактными уплотнениями.

Все опоры роторов турбин имеют устройства для гашения колебаний роторов, возникающих при работе двигателя, ? масляные демпферы опор роторов.

Роторы турбин не имеют механической связи между собой, их взаимодействие обусловлено газодинамической связью.

Турбина высокого давления (ТВД)

Турбина высокого давления (ТВД) ? осевая, реактивная, одноступенчатая, предназначена для преобразования части энергии газового потока, поступающего из КС, в механическую энергию, используемую для вращения ротора КВД и всех приводных агрегатов двигателя.

ТВД расположена за КС, её статор крепится к корпусу и конической балке корпуса КС, опора ротора смонтирована в статоре ТНД (корпусе опор турбин), а ротор крепится к валу КВД.

ТВД состоит из статора и ротора.

Статор ? сопловой аппарат (СА) ТВД, включает наружный корпус, внутренний корпус и сектора сопловых лопаток между ними. Наружный корпус имеет проставки с сотовыми элементами лабиринтного уплотнения.

Сектор сопловых лопаток состоит из лопаток, охлаждаемых воздухом, отбираемым из полости вторичного потока КС, наружной и внутренней полок и имеет выступ для фиксации сектора в окружном направлении; в осевом направлении сектор фиксируется буртиком, а в радиальном ? пояском. Бурт и поясок входят в соответствующие пазы во внутреннем и наружном корпусах.

К внутреннему корпусу болтами крепятся кольца с сотовыми элементами лабиринтных уплотнений.

Наружный корпус центрируется относительно корпуса КС призонными болтами и крепится к нему болтовыми соединениями, состоящими из болтов и самоконтрящихся гаек; внутренний корпус крепится к конической балке КС болтами.

Ротор ТВД включает рабочее колесо (РК) и задний вал. РК состоит из диска имеющего на ободе ёлочные пазы, в каждом из которых крепятся левая и правая рабочие лопатки, образующие лопаточный венец и зафиксированные контровками, а также гребешков лабиринтных уплотнений. Правая и левая лопатки охлаждаются воздухом, подводимым из-за КВД. Каждая охлаждаемая рабочая лопатка имеет бандажную полку с гребешком лабиринтного уплотнения, полку хвостовика и хвостовик ?ёлочного типа?.

На заднем валу ТВД, имеющем гребешки лабиринтных уплотнений, смонтированы детали радиально-торцового контактного уплотнения и внутреннее кольцо роликоподшипника, а внутри вала ? уплотнительное кольцо.

Ротор ТВД крепится к заднему валу КВД стяжными болтами, имеющими призонные участки для центрирования РК относительно заднего вала КВД и передачи крутящего момента, и призонные участки для центрирования заднего вала ТВД относительно РК

 

.2 Расчет на прочность наиболее нагруженных деталей узла (диск, лопатка РК)

 

.2.1 Расчет на прочность лопатки первой ступени компрессора высокого давления

Рабочие лопатки осевого компрессора являются ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом.

При работе газотурбинного двигателя на рабочие лопатки действуют статические, динамические и температурные нагрузки, вызывая сложную картину напряжений.

Расчет на прочность пера лопатки выполняем, учитывая воздействие только статических нагрузок. К ним относятся центробежные силы масс лопаток, которые появляются при вращении ротора, и газовые силы, возникающие при обтекании газом профиля пера лопатки и в связи с наличием разности давлений газа перед и за лопаткой.

Центробежные силы вызывают деформации растяжения, изгиба и кручения, газовые - деформации изгиба и кручения.

Напряжения кручения от центробежных, газовых сил слабозакрученных рабочих лопаток компрессора малы, и ими пренебрегаем.

Напряжения растяжения от центробежных сил являются наиболее существенными.

Напряжения изгиба обычно меньше напряжений растяжения, причем при необходимости для уменьшения изгибающих напряжений в лопатке от газовых сил ее проектируют так, чтобы возникающие изгибающие моменты от центробежных сил были противоположны по знаку моментам от газовых сил и, следовательно