Использование SPSS в маркетинговых исследованиях

Дипломная работа - Иностранные языки

Другие дипломы по предмету Иностранные языки



b> Simple Define выбор переменных

Диаграмма позволяет на глаз оценить зависимость двух переменных.

Рис. 2.13. Построение диаграммы рассеяния

Поверх уже созданной диаграммы в окне вывода можно наложить линию наименьших квадратов. В окне Редактора графиков (чтобы его вызвать, необходимо два раза щелкнуть левой клавишей мыши на графике в окне вывода) требуется задать: Charts Options Fit Line Total

Рис. 2.14. Наложение линии наименьших квадратов поверх диаграммы рассеяния

Если требуется обнаружить квадратичную или кубическую зависимость, необходимо в окне редактора графиков выбирать Fit Options.

Информацию о зависимости между переменными можно получить, вычислив коэффициент корреляции Пирсона r:

r = 1 прямая зависимость;

r = -1 - обратная зависимость;

r = 0 - отсутствие зависимости (вернее, в данном случае линейную зависимость установить не удается и можно попытаться установить нелинейную зависимость, используя диаграммы рассеяния см. выше). Для вычисления коэффициента корреляции Пирсона используются пункты меню:

Statistics Correlate - Bivariate

выбор переменных Correlation Coefficients - Pearson

Рис. 2.15. Вычисление коэффициента корреляции Пирсона

Для каждой выбранной пары переменных принимается нулевая гипотеза о том, что линейная зависимость между ними отсутствует.

Результаты вычислений помещаются в таблицу Correlations в окне вывода (см.рис.2.16):

Pearson Correlation коэффициент корреляции;

Sig. (2-tailed) уровень значимости коэффициента;

N - количество записей в файле данных, по которым делался расчет.

Рис 2.16. Вычисление коэффициента корреляции Пирсона

Особое внимание следует обратить на уровень значимости любая значимость выше 0.05 (5%) подтверждает нулевую гипотезу (о том, что в генеральной совокупности значение коэффициента корреляции равно нулю).

Для использования коэффициента корреляции Пирсона необходимо, чтобы все переменные были непрерывными и данные являлись бы случайной выборкой из генеральной совокупности с нормальным распределением. В том случае, когда какое-либо из этих условий не выполняется и коэффициент Пирсона использовать нельзя, применяются так называемые непараметрические критерии и, в частности, коэффициент ранговой корреляции Спирмена. Его значение также заключено между 1 и +1, интерпретация осуществляется так же, как и интерпретация значений коэффициента Пирсона.

Statistics Correlate - Bivariate выбор переменных

Correlation Coefficients - Spearman

Коэффициент Спирмена менее мощный, чем коэффициент Пирсона, поскольку в нем используется меньше информации о данных; тем не менее он является весьма полезным и часто используется в случае невозможности использования критерия Пирсона.

При интерпретации результатов исследования комбинации переменных с помощью корреляции, необходимо помнить, что сильная корреляционная зависимость между переменными совсем не означает, что одна является причиной другой!

2.5. Расчет t-критерия.

tкритерий применяется для сравнения двух групп, образованных категориями независимой переменной по характеристикам распределения зависимой непрерывной переменной.

В основе t-критерия лежат следующие предположения.

Две группы являются взаимоисключающими, т.е. каждое наблюдение может попасть только в одну из этих групп.

Данные получены в результате случайной выборки из генеральной совокупности с нормальным распределением непрерывной переменной.

В генеральной совокупности в обеих группах одинаковая дисперсия непрерывной переменной

Как правило, перед расчетом t-критерия осуществляется проверка двух последних предположений. Для проверки равенства дисперсий используется критерий Ливиня (Levene test), который более устойчив к нарушению нормальности распределения, чем другие критерии; в программе SPSS он автоматически рассчитывается при расчете t-критерия. Нулевая гипотеза, которую проверяет критерий Ливиня равенство внутригрупповых дисперсий.

Как и все виды генерализующей статистики, t-критерий используется для того, чтобы на основе данных нашей выборки оценить вероятность того, что обнаруженные различия являются подлинными (существующими в генеральной совокупности), а не вызваны исключительно случайной ошибкой выборки.

Нулевая гипотеза состоит в том, что средние значения исследуемой переменной в группах равны (применительно к обработке опросного листа - например, в группе мужчин и группе женщин).

Для расчета t-критерия используются пункты меню:

Statistics Compare Means Independent Samples T Test выбор переменных для переменной Grouping Variable определить группы Define Groups

Рис. 2.17. Формирование задания для вычисление t- критерия

Levene's Test for Equality of Variances критерий равенства дисперсий Ливиня. Приводится значение критерия F и уровень его значимости Sig. Если уровень значимости критерия ниже 0.05, то нулевая гипотеза о равенстве дисперсий отвергается, и можно использовать только вторую строку таблицы Equal variances not assumed (равенство дисперсий не предполагается). В противном случае используется первая строка.

t - значение t-критерия. Показывает направление и степень межгруппового различия средних.

Sig (2-tailed) уровень значимости t-критерия. Если уровень значимости больше 0.05, принимается нулевая гипотеза о равенстве средних в подгр?/p>