Использование SPSS в маркетинговых исследованиях

Дипломная работа - Иностранные языки

Другие дипломы по предмету Иностранные языки



> 53,00 7 . 5566677889

43,00 8 . 001122234

20,00 8 . 5799&

Stem width: 10

Each leaf: 5 case(s) & denotes fractional leaves.

Рис. 2.8. Пример диаграммы Stem-and-Leaf

Оценить вид распределения помогают также "ящичковые диаграммы". Для вычисления "ящичковых диаграмм" используются пункты меню: Statistics Summarize Explore

выбор переменной PlotsтАж - Factor levels Together

Ящичковые диаграммы дают исследователю общее представление о распределении переменной: на них высота ящичка разброс значений, жирная черта внутри медиана или 50%- процентиль, нижняя грань 25%-процентиль, верхняя 75%-процентиль.

Значения, не попавшие внутрь, изображаются отдельно вне ящика.

Эти значения можно исследовать отдельно (если они есть):

Statistics Summarize Explore

выбор переменной - StatisticsтАж- Outliers

Рис. 2.9. Пример задания расчета ящичковой диаграммы

В окне вывода при таком исследовании выводится таблица экстремальных значений Extreme Values.

Одним из методов исследования нормальности распределения является также построение графиков на нормальной вероятностной бумаге. На графике даются координаты фактических значений переменных и теоретические значения, вычисленные при условии

нормальности распределения (линия). Чем ближе фактические значения к линии, тем больше распределение близко к нормальному. Аналогично можно интерпретировать график с удаленным трендом Detrended Normal Q-Q Plot, - нормальному распределению здесь соответствует горизонтальная линия.

При построении графиков на нормальной вероятностной бумаге в программе SPSS автоматически рассчитываются значения коэффициентов Колмогорова-Смирнова и Шапиро-Уилкса. Эти критерии основаны на нулевой гипотезе о том, что данная выборка получена из генеральной совокупности, имеющей нормальное распределение. В окне вывода можно изучить Tests of Normality, особенно обращая внимание на уровень значимости каждого критерия Sig: если он больше 0.05 (т.е. превышает 5%), то можно принять нулевую гипотезу или, строго говоря, нет оснований ее отвергнуть!

Существует большое количество методов проверки нормальности распределения, но ни один из них не является универсальным. Одни могут подтверждать нормальность, а другие отвергать. Исследователю необходимо использовать все возможные методы для получения как можно менее противоречивых данных!

2.3. Построение таблиц сопряженности

Каждая ячейка таблицы сопряженности содержит информацию о количестве объектов, попадающих в группу, определенную комбинацией двух значений. В применении к анализу опросных листов это означает, что исследователь может, например, получить информацию о количестве мужчин, имеющих информацию о товаре (количество человек, ответивших на вопрос о поле "муж.", и на вопрос о известности товара "известен").

Для вычисления таблиц сопряженности используются пункты меню (см. рис.2.10):

Statistics Summarize Crosstabs

выбор переменных: Row - по строкам, Column - по столбцам

Помимо количества объектов, попадающих на комбинацию значений, в таблице можно вывести и процентные соотношения (см. рис.2.11) после выбора переменных :

Cells Percentages Total (по строкам и по столбцам)

Соотношения в таблицах сопряженности применимы только к выборке; для того, чтобы проверить, возможно ли распространить результаты на генеральную совокупность, необходимо использовать специальные критерии, в частности, вычислить критерий хи-квадрат Пирсона.

Рис. 2.10. Вычисление таблиц сопряженности

Рис. 2.11. К вычислению таблиц сопряженности

Нулевая гипотеза предполагает, что между переменными нет никакой зависимости. Используем пункты меню (см. рис.2.12):

Statistics Summarize Crosstabs - тАжтАж. тАжтАжтАж-Statistics тАж - Chi-square

Рис. 2.12. Вычисление критерия хи-квадрат Пирсона

В таблицах окна вывода программы SPSS исследователь получает следующие результаты:

Pearson Chi-Square хи-квадрат Пирсона.

Likelihood Ratio отношение правдоподобия. Рассчитывается по более сложной формуле, чем хи-квадрат Пирсона (хи-квадрат представляет собой приблизительную оценку отношения правдоподобия).

Linear-by-Linear Association критерий линейно-линейной зависимости. Представляет собой коэффициент корреляции, применим только если обе переменные порядковые!

В таблице в окне вывода: Value значения критерия, df - количество степеней свободы, Asymp.Sig.(2-sided)- уровень значимости. Обычно нулевая гипотеза отвергается, если уровень значимости меньше 5% (0.05).

Для того, чтобы определить вклад каждой ячейки таблицы в общее значение критерия хи-квадрат, можно в меню:

Statistics Summarize Crosstabs - тАжтАж.- Cells

выбрать для вывода также значения :

Expected ожидаемое значение;

Unstandarized ненормированные остатки;

Standarized нормированные остатки

All Standarized исправленные нормированные остатки (см. рис. 2.11).

Величины остатков позволяют судить о том, насколько сильно фактические значения отличаются от ожидаемых, или какие значения более всего отклоняются от нулевой гипотезы (если она верна, остатки должны быть равны нулю).

2.4. Вычисление корреляционных функций.

Корреляция - это исследование комбинаций непрерывных переменных. Графическое представление зависимости между переменными можно получить с помощью диаграммы рассеяния. Для построения диаграммы рассеяния используются пункты меню:

Graphs Scatter