Информационные устройства и системы управления автосигнализацией

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



>Рисунок 8 ? График падения действующего напряжения на датчике

.2.2 Датчик тока

Датчик тока выполнен в виде тороидальной измерительной катушки индуктивности, которая охватывает проводник с током. Эквивалентная схема измерительной цепи приведена на рисунке 9.

Необходимо:

? рассчитать и построить график коэффициента передачи датчика по току в зависимости от частоты сигнала, протекающего в проводе (для минимального

Рисунок 9 ? Эквивалентная схема измерительной цепи

? построить график зависимости коэффициента трансформации датчика тока, от предельных значений радиуса провода.

Исходные данные:

? сопротивление нагрузки датчика, Zн = 50 Ом;

? число витков катушки, ;

? коэффициент связи, g = 0,4;

? средний диаметр тора, м;

? диаметр среднего витка, м;

? радиус уединенного прямолинейного провода круглого сечения, м;

? постоянная составляющая, .

Индуктивность тороидальной катушки кругового сечения, представленной на рисунке 10 определяется по формуле 8.

Рисунок 10 ? Тороидальная катушка кругового сечения.

, (8)

Гн.

Индуктивность уединенного прямолинейного провода круглого сечения определяем по формуле 9.

, (9)

Гн.

Коэффициент передачи датчика по току определяется по формуле 10.

, (10)

где ? сила тока, протекающего по проводу, который охватывает измерительная катушка, А;

? сила трансформированного тока, протекающего в цепи датчика, А;

,

.

График изменения коэффициент передачи датчика по току в зависимости от частоты представлен на рисунке 11.

Коэффициент трансформации датчика тока определяем по формуле 11.

, (11)

.

Рисунок 11 ? График изменения коэффициент передачи датчика по току в зависимости от частоты.

Зависимости коэффициента трансформации датчика тока, от предельных значений радиуса провода примет вид , где .

График зависимости коэффициента трансформации датчика тока, от предельных значений радиуса провода представлен на рисунке 12.

Рисунок 12 ? График зависимости коэффициента трансформации датчика тока, от предельных значений радиуса провода.

3.3.3 Датчик Холла

Необходимо:

? определить максимальное выходное напряжение с датчика, если вектор магнитного поля ориентирован к вектору силы тока под углом ?. А изменение вектора индукции описывается по закону

, .

? построить график временной зависимости изменения выходного напряжения с датчика. Построить график зависимости падения напряжения на сопротивлении нагрузки.

Исходные данные:

? толщина кристалла, м;

? коэффициент Холла, Ом;

? сопротивление нагрузки, Ом;

? емкость конденсатора, Ф;

? магнитная индукция, Тл, Тл;

? сила тока, А;

? частоты, Гц, Гц, Гц;

? угол ? = 11.

Для выходного напряжения с учётом угла ? и заданных законов, описывающих изменение вектора магнитной индукции, имеем зависимость

.

График зависимости выходного напряжения датчика от времени представлен на рисунке 13.

Максимальное выходное напряжение из графика (рисунок 16) В.

Определяем сопротивление конденсатора по формуле 12.

автосигнализация схема датчик

, (12)

Рисунок 13 ? График зависимости выходного напряжения датчика от времени.

Ом.

Ток в цепи резистора в зависимости от времени определяется как

.

Падение напряжения на резисторе представляется зависимостью

.

График падения напряжения на сопротивлении нагрузки представлен на рисунке 14.

Рисунок 14 ? График падения напряжения на сопротивлении нагрузки.

.3.4 Датчик температуры на основе металлических проводников

Датчик температуры включён в Мост Уитстона представленный на рисунке 15. При температуре 0С Мост Уитстона сбалансирован.

Рисунок 15 ? Мост Уитстона

Необходимо:

? построить график зависимости ;

? определить напряжение при температурах -40 и +100С.

? определить какие диапазоны температур при изменении -40 и +100С попадают в область относительной погрешности измерения напряжения , если вольтметр, измеряющий указанное напряжение имеет относительную погрешность 5%.

Исходные данные:

? температурный коэффициент, ;

? сопротивление металлического проводника при температуре 0С, Ом;

? напряжение питания Моста Уитстона, В;

Сопротивление датчика температуры, выполненного на основе металлического проводника, определяется выражением 13.

, (13)

где ? температура окружающей среды, С.

Напряжение между точками 1 и 2 на схеме (рисунок 15) определяется формулой 14.

. (14)

При условии баланса Моста Уитстона

Из схемы представленной на рисунке 15 и выражений 13 и 14 получаем зависимости , где .

График зависимости температуры окружающей среды от напряжения представлен на рисунке 16.

Рисунок 16 ? График зависимости температуры окружающей среды от напряжения

Определить напряжение при температурах -40 и +100С.

Температура окружающей среды имеет значения К.

По формуле 13 определяем значения сопротивлений при заданных значениях

Ом,

Ом.

По формуле 14 определяем значения .

В,

В.

С учётом заданной 5% погрешности вольтметра, определим факт