Абсолютные и относительные величины. Средние величины и показатели вариации

Методическое пособие - Экономика

Другие методички по предмету Экономика

?а распределения имеет свои особенности. Проиллюстрируем эти особенности по данным группировки в табл. 1.3.5.

средний арифметический вариация

Таблица 1.3.5

Расчет среднего производственного стажа работников на основе ряда распределения

Стаж, летЧисло работников, fСередина интервала хxf1 442,510,04 755,527,57 1028,517,0Итого11-54,5

В данном случае следует воспользоваться формулой средней арифметической взвешенной, поскольку интервальные значения признака встречаются не один раз, и эти числа повторений (частоты) не одинаковы.

Конкретными значениями признака, которые должны непосредственно участвовать в расчетах, служат середины (центры) интервалов (но не средние в интервалах значения!), а весами - частоты:

 

 

Данный результат отличается от полученного на основе средней арифметической простой. Это объясняется тем, что в расчете на основе ряда распределения мы располагаем не исходными индивидуальными данными, а лишь сведениями о величине середины (центра) интервала.

 

5. Средняя гармоническая и условия ее применения

 

Формулы и техника расчета средней гармонической следующие:

простой средней гармонической

 

взвешенной средней гармонической

 

 

Общий подход к выбору правильности вида средней изложен в подразделе 1.3.3.

В данном случае приведем дополнительное условие применения средней гармонической взвешенной (поскольку в практике расчетов взвешенные средние используются чаще).

Средняя гармоническая взвешенная применяется в тех случаях, когда весами являются не частоты f, а произведения этих частот на значения признака: М = xf.

Пример 1.3.9. Имеются следующие данные (табл. 1.3.6).

 

Таблица 1.3.6

Заработная плата рабочих в цехах предприятия

ЦехСредняя заработная плата, руб.Фонд заработной платы, тыс. руб.Литейный3820191Сборочный2960592

Вычислите среднюю заработную плату рабочих по предприятию в целом.

Решение

Средняя заработная плата рабочих по цехам может быть вычислена делением фонда заработной платы на численность рабочих. Этот подход должен быть сохранен и при расчете общей средней, т.е. в числителе дроби необходимо представить общий по всем цехам фонд заработной платы, а в знаменателе общую численность рабочих. Однако фонд заработной платы по цехам (М) есть произведение средних заработков на число рабочих f. Фонд заработной платы - единственно возможный в данном случае соизмеритель - вес при расчете средней.

Оба эти обстоятельства обусловливают применение средней гармонической, а с учетом того, что заработки по отдельным цехам получают неодинаковые по численности группы рабочих, следует использовать среднюю гармоническую взвешенную. Тогда

 

 

При этом 783000 руб. - общий фонд заработной платы по предприятию, 250 чел. - общая численность работников (50 и 200 чел. - численность по каждому цеху в отдельности).

Если веса при расчете средней у отдельных единиц совокупности одинаковы, то средняя гармоническая взвешенная обращается в среднюю гармоническую простую:

 

 

(M выносится за скобки, поскольку является общим множителем). Проиллюстрируем расчет на условном примере.

Пример 1.3.10. Цена за единицу товара А, продаваемого в первой торговой точке, составила 20 руб., во второй - 30 руб. Какова средняя продажная цена товара, если выручка от продаж товара в торговых точках одинакова?

Решение

Поскольку весами при расчете средней являются выручки от продажи (товарооборота), а сама выручка представляет собой произведение цены х на количество проданного товара/, вычисления проводили по средней гармонической взвешенной, равенство весов позволяет осуществлять расчеты по формуле средней гармонической простой:

 

 

6. Структурные средние

 

Наряду с расчетом средней арифметической и средней гармонической для вариационных рядов распределения исчисляют структурные средние - моду, медиану.

Мода - это значение признака (варианта), которое чаще всего встречается в исследуемой совокупности и имеет наибольшую частоту.

Медианой называется значение признака (варианта), которое находится в середине вариационного ряда и делит ряд пополам.

В интервальном вариационном ряду мода рассчитывается по формуле

 

 

где хМо - минимальная граница модального интервала;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

частота интервала, следующего за модальным.

Медиана для интервального ряда распределения рассчитывается по формуле

 

где - нижняя граница медианного интервала;

- величина медианного интервала;

- сумма накопленных частот, предшествующих медианному;

- частота медианного интервала.

Для характеристики структуры вариационного ряда дополнительно к медиане исчисляют квартили, которые делят ряд по сумме частот на четыре равные части, квинтели - на пять равных частей, децили - на десять равных частей и перцентили - на сто равных частей.

Пример 1.3.11. Имеются следующие данные (табл. 1.3.7).

 

Таблица 1.3.7

Месячная заработная плата рабочих группы малых предприятий одного из регионов

Группы рабочих по размеру заработной платы, руб.Число рабочих, чел.2000-3000

3000-4000

4000-5000

5000-6000

6000-7000

Свыше 700015

35

75