Задачи Лоповок

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

?остройте прямоугольный треугольник по острому углу и сумме гипотенузы с проведенной к ней медианой.

110. В треугольнике АВС /- А = 15, ^ В == 30. Докажите, что перпендикуляр СМ к АС делит сторону АВ на такие частя АМ и МВ, что АМ = 2 ВС (рис. 14).

111. Высота и медиана, проведенные из одной вершины треугольника, разделили его угол на три части. Найдите углы треугольника.

112. На прямой отложены отрезки АВ == 2, ВС == СВ =- 1, ВЕ = 2. Из точки М, находящейся вне этой прямой, все названные отрезки видны под равными углами. Определите градусные меры этих углов.

113. Желая доказать, что гипотенуза прямоугольного треугольника больше катета, ученик построил из вершины прямого угла ВАС такой луч АМ, что ^- ВАМ = ^- С (рис. 15). Как он хотел доказать теорему?

114. Бильярд имеет форму прямоугольного треугольника Шар толкнули по биссектрисе острого угла. Отразившись от бортов в точках В, Е, К, шар вернулся по пройденному пути (рис. 16). Найдите острые углы треугольника.

115. Бильярд имеет форму прямоугольного треугольник? АВС. Шар толкнули по биссектрисе прямого угла С. Отразившись от бортов в точках К, Е, М, шар вернулся по пройден ному пути. Найдите острые угль! треугольника.

116. Гипотенуза прямоугольного треугольника в четыре раз;

больше проведенной к ней высоты. Найдите острые углы треугольника.

117. Д АВС прямоугольный, биссектрисы его острых углов ВВ и СЕ, отрезки ВК и ЕМ перпендикуляры к ВС (рис. 17). Найдите /- КАМ.

11в. Из города М по двум прямолинейным дорогам выехали одновременно велосипедист и мотоциклист. Через 20 мин после выезда мотоциклист прибыл в пункт В а велосипедист в пункт А, при этом А МАВ оказался прямоугольным. Еще через 30 мин путешественники были в таких пунктах С и О, что А МСВ оказался равносторонним. Через сколько часов после этого они окажутся таких пунктах Р и Т, что А МРТ будет прямоугольным?

119. В прямоугольном треугольнике АВС АВ == Асг Внутри треугольника взята такая точка М, что /- МАВ == ^- МВА == == 15. Найдите А. ВМС.

Окружность

120. Докажите, что из двух пересекающихся хорд, не проходящих через центр окружности, хоть одна не делится пополам.

121. Докажите, что из центра вписанной окружности каждая сторона треугольника видна под тупым углом.

122. Окружность касается гипотенузы и продолжений катетов. Докажите, что диаметр окружности равен периметру прямоугольного треугольника.

123. На сторонах прямого угла М отмечены такие точки А и В, С и В, что ВО == АВ 4- СВ. Докажите, что разность диаметров окружностей, вписанных в треугольники МВВ а МАС, равна АС.

124. Катеты прямоугольного треугольника а, Ь, гипотенуза

с. Докажите, что радиус вписанной окружности г == д ~ с . &

125. Постройте две окружности с центрами на данной прямой в касающиеся одна другой в данной точке М и касающиеся другой данной прямой Ь.

126. Окружности с центрами 0\ и Оу. касаются внешним образом. Окружность с центром Оэ и радиусом 12 см касается их внутренним образом. Определите периметр треугольника 010а0з.

127. Какую фигуру образуют все точки плоскости, из которых данная окружность видна под прямым углом?

128. Даны точки А, В, С, В. Постройте окружность, которая проходит через точки А и В а касательные к ней, проведенные из точек С и В, равной длины.

129. Даны окружность М точка М вне ее. Проведите через М прямую, пересекающую окружность в точках, расстояние между которым равно с.

130- Постройте окружность, которая касается двух данных окружностей, причем одной из них в данной точке М.

181. Постройте треугольник АВС по основанию, высоте, проведенной к боковой стороне, и радиусу описанной окружности.

132. Постройте треугольник по высоте и медиане, проведенным к основанию, и радиусу описанной окружности.

133. Постройте треугольник АВС, если дана прямая, "а которой лежит биссектриса угла А, и точка касания сторон АВ и ВС вписанной в треугольник окружности.

134. Постройте две окружности, каждая из которых касается одной из равных сторон треугольника и продолжений двух других сторон. Докажите, что эти окружности равны, а прямая, проходящая через их центры, параллельна основанию треугольника.

Вписанные углы

135. Докажите теорему о вписанных углах, пользуясь рисунком 18.

136. Треугольник АВС остроугольный, ВМ и СМ перпендикуляры к АВ и АС. Докажите, что точка М лежит на окружности, описанной около треугольника АВС.

137. О центр окружности, вписанной в треугольник АВС. Докажите, что центр окружности, проходящей через точки А, В, О, лежит на прямой СО.

138. Два угла треугольника имеют величины 52 и 58. Вписанная окружность касается сторон треугольника в точках К, Ъ, М. Определите величины углов треугольника КЬМ.

139. Один из углов треугольника 40. Стороны этого угла видны из центра описанной окружности под углами, которые относятся, как 2 : 3. Найдите эти углы.

140. Найдите углы треугольника, две стороны которого видны из центра описанной окружности под углами: а) 122 и 104; б) 29 и 47.

141. 0\ и Оч центры вписанной и описанной окружностей треугольника АВС. Зная, что ^- АО\В = //- АОчВ, найдите /- С.

142. АА\ и ВВ\ высоты треугольника АВС. Постройте треугольник АВС по точкам А\, В\ и прямой АВ.