Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном в...

Диссертация - Разное

Другие диссертации по предмету Разное

?лекул акцептора в растворе.

Сравнение экспериментальных результатов показывает, что аномальная температурная зависимость и концентрационное тушение сенсибилизированной фосфоресценции наблюдается при одинаковых концентрациях акцептора в растворе.

Наряду с концентрационным изменением интенсивности сенсибилизированной фосфоресценции было исследовано поведение других люминесцентных характеристик положение максимума 0-0 полосы и времени затухания сенсибилизированной фосфоресценции при изменении концентрации примесей в растворе.

В таблице 4 приведена концентрационная зависимость положения максимума 0-0 полосы (max) и времени затухания (Т) сенсибилизированной фосфоресценции пары бензофенон-аценафтен в н.-гексане.

 

 

 

 

Таблица 4

Концентрационная зависимость параметров сенсибилизированной фосфоресценции аценафтена, донор бензофенон, в н.-гексане.

 

СБ=СА, М10-2510-32.510-310-4510-42.510-310-4max, нм481.2481.0480.7480.6480.4480.2479.6Т, с2.252.302.402.502.552.652.65

Из данных таблицы видно, что максимум 0-0 полосы при увеличении концентрации молекул примеси смещается в длинноволновую область, время затухания при этом уменьшается.

В ходе проведённых экспериментов было замечено, что интервал концентраций молекул примесей, в котором наблюдается аномальная температурная зависимость интенсивности сенсибилизированной фосфоресценции, отличается для различных растворителей.

В н.-гексане для получения аномальной температурной зависимости I/I0 необходимо создавать довольно высокие концентрации молекул примесей. При этом в температурной области 2 наблюдается лишь незначительное увеличение относительной интенсивности, не превышающее первоначальное. Так, например, для донорно-акцепторной пары бензофенон-аценафтен при концентрациях бензофенона и аценафтена - 10-2 М (рис.11, кривая 1) наблюдается увеличение I/I0 в температурной области 2 от 0.47 до 0.66; при концентрации бензофенона - 210-2 и аценафтена - 510-2 (рис.7) наблюдается увеличение I/I0 от 0.4 до 0.6. Достичь большего увеличения I/I0 за счёт увеличения концентрации примесных молекул не удаётся из-за образования при их повышении в растворе других центров, отличных от мономерных молекул.

В н.-октане диапазон концентраций примесей, при которых наблюдается аномальный температурный ход кривой, сдвинут в сторону меньших концентраций. Для пары бензофенон-аценафтен уже при концентрации примесей 2.510-3 М в н.-октане наблюдается увеличение I/I0 в температурной области 2 от 0.07 до 1.50 (рис.11, кривая 2). При увеличении концентраций донора и акцептора до 510-3 М наблюдается изменение I/I0 от 0.2 до 4.7 (рис. 13, кривая 3).

Можно сделать вывод, что для донорно-акцепторной пары бензофенон-аценафтен переход от н.-гексана к н.-октану ведёт к более выраженной аномальной температурной зависимости I/I0.

Рассматривая причины, которые могут обуславливать такое влияние растворителя, представляется важным рассмотреть вопрос о расположении молекул примеси при замораживании в н.-парафиновых матрицах. Такую возможность даёт анализ структуры спектров молекул примесей в каждом из растворителей.

В таблице 5 собраны данные по исследованию структуры спектров люминесценции [86,115,148] выбранных соединений в растворителях от н.-гексана до н.-декана при низких температурах.

 

Таблица 5.

Виды спектров ароматических углеводородов в н.-парафиновых матрицах при низких температурах.

 

СоединениеРастворительн.-гексанн.-гептанн.-октанн.-деканБензофенонД[86]Д[86]ДДАнтронК[86]К[86]--АценафтенК[148]К[148] (10-2-10-3М)

Д[148] (10-4-10-5М)Д[148]ДНафталинК[115] (10-2М)

Д[115] (10-3-10-5М)Д[115]Д[115]ДФлуоренК[86]К[86]--

П р и м е ч а н и е. Д диффузионный спектр, К квазилинейчатый спектр;

[85], [115], [148] ссылки на источник литературы; без ссылок данные настоящей работы.

 

Из таблицы видно, что для антрона и флуорена н.-гексан и н.-гептан являются удобными растворителями.

Для бензофенона, который использовался в качестве донора энергии, все используемые растворители являются неудобными, т.е. в процессе кристаллизации практически все молекулы бензофенона вытесняются на поверхность.

Аценафтен и нафталин, используемые как акцепторы, в исследуемых растворителях обнаруживают различный характер спектров. В н.-гексане аценафтен при любых концентрациях от 10-5 до 10-2 М имеет квазилинейчатый спектр. В н.-гептане вид спектра зависит от концентрации аценафтена: в диапазоне 10-3 - 10-2 М спектр квазилинейчатый, 10-4 10-5 М спектр диффузный. Причины такой зависимости обсуждались выше. В н.-октане и н.-декане спектры аценафтена при любых концентрациях имеют диффузный характер [148].

Нафталин уже в н.-гексане обнаруживает зависимость вида спектра от концентрации: при 10-2 М спектр квазилинейчатый, в диапазоне 10-3 10-5 М диффузный. Далее, от н.-гептана до н.-декана растворители являются неудобными для нафталина [115].

Анализируя приведённые данные по структуре спектров, можно обнаружить связь между удобством растворителя, для каждого из входящих в донорно-акцепторную пару соединений, и величиной увеличения числа триплетных молекул акцептора в аномальной температурной области.

Получить аномальную температурную зависимость интенсивности сенсибилизированной фосфоресценции для пары антрон-флуорен в н.-гексане удалось только для больших концентраций - 210-2 М (рис.9). Причём увеличение составляло всего лишь несколько процентов от ?/p>