Властивості рідини і газу

Курсовой проект - Физика

Другие курсовые по предмету Физика

?у гладкої труби, наприклад, f = 0,316/Re1/4, тоді як при аналогічних умовах формула Пуазейля дає f = 64/Re. Чим більше шорсткість поверхні, тим, мабуть, більше величина f ; якщо шорсткість труби досить велика, то при більших числах Рейнольдса коефіцієнт f перестає залежати від грузлого зрушення й повністю визначається нерівностями стінок, що викликають завихрення.

 

4. Гідравлічний удар

 

З погляду гідроаеромеханіки рідини й гази дуже схожі між собою. Однак, щільність рідини в багато разів більше щільності газу. Тому гребні гвинти морських і річкових судів порівняно менше пропелерів літаків - важка рідина працює ефективніше, ніж легке повітря. По тій же причині рідина може виявитися небезпечніше й привести до аварії.

При раптовому перекриванні води, тиск у трубі зростає на величину pva, де р - щільність рідини або газу, v - швидкість плину й а - швидкість звуку. Швидкість звуку в трубі з водою дорівнює 1400 м/с, тому саме з такою швидкістю буде поширюватися підвищений тиск по трубопроводу. Якщо десь виявитися неміцна ділянка труби, вона буде прорваний. Газ, у порівнянні з рідиною, має набагато меншу щільність, та й швидкість звуку в ньому в кілька разів менше, тому газ, що навіть перебуває під більшим тиском, не може створити удар, подібний гідравлічному.

Гідравлічний удар може бути спрямований і у зворотну (від заслінки) сторону. Це відбудеться, якщо різко перекрити воду, потік якої досить протяжний. Рідина, рухаючись за інерцією, відірветься від заслінки, а простір між заслінкою й рідиною заповнитися водяною парою під дуже низьким тиском (те саме що вакуум). В остаточному підсумку, потік рідини під дією зовнішнього тиску загальмується, зупиниться й з наростаючою швидкістю рушить у протилежному напрямку.

Гідравлічний удар може також зіграти корисну роль. Якщо ушкодження вже є, відшукати його розташування допоможе невеликий гідравлічний удар. Він створить хвилю, що біжить по трубопроводу, що, відбившись від місця ушкодження, повернеться через якийсь час. По цьому часі легко визначити відстань до ушкодженої ділянки.

Явища в прикордонному шарі.

У випадку плину зазначеного виду по довгій трубі вплив стінок на характер плину поширюється й на центральну частину труби. У випадку ж обтікання тіла середовищем дія, що сповільнює, грузлого зрушення уздовж поверхні тіла (на якій швидкість дорівнює нулю) звичайно поширюється в навколишнє середовище лише на порівняно невелику відстань. Відносна товщина цього т.зв. прикордонного шару залежить від числа Рейнольдса, складеного з відносної швидкості, щільності й вязкості текучого середовища й відстані від розглянутої крапки до передньої крайки тіла. При малих значеннях Re прикордонний шар буде ламінарним, але плин стає нестійким стосовно малих збурювань, коли Re наближається до 4?106, а після цього розвивається турбулентність. Грузле зрушення уздовж граничної поверхні тепер аналогічний перепаду тиску уздовж труби й точно так само залежить від числа Рейнольдса. Повна сила опору плину FD, створювана ділянкою поверхні довжиною L і шириною B, дається вираженням

 

 

де Cf коефіцієнт опору, що залежить від Re = VL?/? і від шорсткості поверхні. Для гладкої поверхні Cf = 1,33/Re1/2, якщо прикордонний шар ламінарний, і Cf = 0,074/Re1/5, якщо прикордонний шар повністю турбулентний. Це співвідношення грає дуже важливу роль у розрахунках опору крила й фюзеляжу літака, а також корпуса річкового або морського судна. Теорія прикордонного шару розроблена Л.Прандтлем (1875-1953).

Поряд з поверхневим опором, що виникає в прикордонному шарі, у цьому шарі спостерігається ще одне важливе явище - відрив плину від стінки при різкій зміні її геометрії. Грузле текуче середовище при більших числах Рейнольдса не треба точно за зламом стінки й не замикаються без збурювань навіть за добре закругленим тілом, наприклад сферичного. Для запобігання відриву потоку задньої частини тіла надають обтічну форму й точно так само згладжують (профілюють) трубу змінного діаметра (сопло Лаваля). Явище відриву повязане з високими градієнтами тиску й швидкості плину в прикордонному шарі, і така тенденція помітно слабшає, якщо відводити текуче середовище із прикордонного шару. Тому, зокрема, передбачають прорізи на крилах і фюзеляжі літака для зливу прикордонного шару.

Відрив потоку, загалом кажучи, небажаний, оскільки він звичайно виникає в крапках максимальної швидкості й, отже, мінімального тиску, після чого цей низький тиск домінує у всій зоні відриву нижче за течією. У результаті плин впливає на поверхню тіла (стінку) з деякою силою, що додається до поверхневого опору (створюючи опір форми, обумовлене підвищеним тиском попереду обтічного тіла й зниженим позаду), а енергія плину непродуктивно витрачається на інтенсивну турбулентність, що виникає в нестійкій зоні відриву. Для занурених у потік тіл сполучення поверхневого опору й опору форми дає повну силу опору руху, що залежить, таким чином, від форми тіла й від числа Рейнольдса, а саме, якщо позначити площа поперечного перерізу тіла через A:

 

 

Для сфери при малих числах Рейнольдса (менш 1) формула Стокса приймає вид CD = 24/Re; при Re ? 105 прикордонний шар є ламінарним і CD = 0,5; при Re ? 106 прикордонний шар стає турбулентним і CD = 0,2. Для парашута опір повинне бути максимальним і CD = 1,3, тоді як для високошвидкісного літака коефіцієнт CD може становити лише 0,05.

Вихрові коливання.

У випадку подовжених тіл, скажемо циліндричних, закономірності опору середови